mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Reduce the complexity of digital_image_processing/edge detection/canny.py (#8167)
* Reduce the complexity of digital_image_processing/edge_detection/canny.py * Fix * updating DIRECTORY.md * updating DIRECTORY.md * updating DIRECTORY.md * Fix review issues * Rename dst to destination --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
63710883c8
commit
59cae167e0
@ -18,60 +18,61 @@ def gen_gaussian_kernel(k_size, sigma):
|
||||
return g
|
||||
|
||||
|
||||
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
|
||||
image_row, image_col = image.shape[0], image.shape[1]
|
||||
# gaussian_filter
|
||||
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
|
||||
# get the gradient and degree by sobel_filter
|
||||
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
|
||||
gradient_direction = np.rad2deg(sobel_theta)
|
||||
gradient_direction += PI
|
||||
|
||||
dst = np.zeros((image_row, image_col))
|
||||
|
||||
def suppress_non_maximum(image_shape, gradient_direction, sobel_grad):
|
||||
"""
|
||||
Non-maximum suppression. If the edge strength of the current pixel is the largest
|
||||
compared to the other pixels in the mask with the same direction, the value will be
|
||||
preserved. Otherwise, the value will be suppressed.
|
||||
"""
|
||||
for row in range(1, image_row - 1):
|
||||
for col in range(1, image_col - 1):
|
||||
destination = np.zeros(image_shape)
|
||||
|
||||
for row in range(1, image_shape[0] - 1):
|
||||
for col in range(1, image_shape[1] - 1):
|
||||
direction = gradient_direction[row, col]
|
||||
|
||||
if (
|
||||
0 <= direction < 22.5
|
||||
0 <= direction < PI / 8
|
||||
or 15 * PI / 8 <= direction <= 2 * PI
|
||||
or 7 * PI / 8 <= direction <= 9 * PI / 8
|
||||
):
|
||||
w = sobel_grad[row, col - 1]
|
||||
e = sobel_grad[row, col + 1]
|
||||
if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
|
||||
dst[row, col] = sobel_grad[row, col]
|
||||
destination[row, col] = sobel_grad[row, col]
|
||||
|
||||
elif (PI / 8 <= direction < 3 * PI / 8) or (
|
||||
9 * PI / 8 <= direction < 11 * PI / 8
|
||||
elif (
|
||||
PI / 8 <= direction < 3 * PI / 8
|
||||
or 9 * PI / 8 <= direction < 11 * PI / 8
|
||||
):
|
||||
sw = sobel_grad[row + 1, col - 1]
|
||||
ne = sobel_grad[row - 1, col + 1]
|
||||
if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
|
||||
dst[row, col] = sobel_grad[row, col]
|
||||
destination[row, col] = sobel_grad[row, col]
|
||||
|
||||
elif (3 * PI / 8 <= direction < 5 * PI / 8) or (
|
||||
11 * PI / 8 <= direction < 13 * PI / 8
|
||||
elif (
|
||||
3 * PI / 8 <= direction < 5 * PI / 8
|
||||
or 11 * PI / 8 <= direction < 13 * PI / 8
|
||||
):
|
||||
n = sobel_grad[row - 1, col]
|
||||
s = sobel_grad[row + 1, col]
|
||||
if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
|
||||
dst[row, col] = sobel_grad[row, col]
|
||||
destination[row, col] = sobel_grad[row, col]
|
||||
|
||||
elif (5 * PI / 8 <= direction < 7 * PI / 8) or (
|
||||
13 * PI / 8 <= direction < 15 * PI / 8
|
||||
elif (
|
||||
5 * PI / 8 <= direction < 7 * PI / 8
|
||||
or 13 * PI / 8 <= direction < 15 * PI / 8
|
||||
):
|
||||
nw = sobel_grad[row - 1, col - 1]
|
||||
se = sobel_grad[row + 1, col + 1]
|
||||
if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
|
||||
dst[row, col] = sobel_grad[row, col]
|
||||
destination[row, col] = sobel_grad[row, col]
|
||||
|
||||
return destination
|
||||
|
||||
|
||||
def detect_high_low_threshold(
|
||||
image_shape, destination, threshold_low, threshold_high, weak, strong
|
||||
):
|
||||
"""
|
||||
High-Low threshold detection. If an edge pixel’s gradient value is higher
|
||||
than the high threshold value, it is marked as a strong edge pixel. If an
|
||||
@ -80,43 +81,63 @@ def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
|
||||
an edge pixel's value is smaller than the low threshold value, it will be
|
||||
suppressed.
|
||||
"""
|
||||
if dst[row, col] >= threshold_high:
|
||||
dst[row, col] = strong
|
||||
elif dst[row, col] <= threshold_low:
|
||||
dst[row, col] = 0
|
||||
for row in range(1, image_shape[0] - 1):
|
||||
for col in range(1, image_shape[1] - 1):
|
||||
if destination[row, col] >= threshold_high:
|
||||
destination[row, col] = strong
|
||||
elif destination[row, col] <= threshold_low:
|
||||
destination[row, col] = 0
|
||||
else:
|
||||
dst[row, col] = weak
|
||||
destination[row, col] = weak
|
||||
|
||||
|
||||
def track_edge(image_shape, destination, weak, strong):
|
||||
"""
|
||||
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
|
||||
to a strong edge pixel while noise responses are unconnected. As long as there is
|
||||
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
|
||||
edge point can be identified as one that should be preserved.
|
||||
"""
|
||||
for row in range(1, image_row):
|
||||
for col in range(1, image_col):
|
||||
if dst[row, col] == weak:
|
||||
for row in range(1, image_shape[0]):
|
||||
for col in range(1, image_shape[1]):
|
||||
if destination[row, col] == weak:
|
||||
if 255 in (
|
||||
dst[row, col + 1],
|
||||
dst[row, col - 1],
|
||||
dst[row - 1, col],
|
||||
dst[row + 1, col],
|
||||
dst[row - 1, col - 1],
|
||||
dst[row + 1, col - 1],
|
||||
dst[row - 1, col + 1],
|
||||
dst[row + 1, col + 1],
|
||||
destination[row, col + 1],
|
||||
destination[row, col - 1],
|
||||
destination[row - 1, col],
|
||||
destination[row + 1, col],
|
||||
destination[row - 1, col - 1],
|
||||
destination[row + 1, col - 1],
|
||||
destination[row - 1, col + 1],
|
||||
destination[row + 1, col + 1],
|
||||
):
|
||||
dst[row, col] = strong
|
||||
destination[row, col] = strong
|
||||
else:
|
||||
dst[row, col] = 0
|
||||
destination[row, col] = 0
|
||||
|
||||
return dst
|
||||
|
||||
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
|
||||
# gaussian_filter
|
||||
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
|
||||
# get the gradient and degree by sobel_filter
|
||||
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
|
||||
gradient_direction = PI + np.rad2deg(sobel_theta)
|
||||
|
||||
destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad)
|
||||
|
||||
detect_high_low_threshold(
|
||||
image.shape, destination, threshold_low, threshold_high, weak, strong
|
||||
)
|
||||
|
||||
track_edge(image.shape, destination, weak, strong)
|
||||
|
||||
return destination
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# read original image in gray mode
|
||||
lena = cv2.imread(r"../image_data/lena.jpg", 0)
|
||||
# canny edge detection
|
||||
canny_dst = canny(lena)
|
||||
cv2.imshow("canny", canny_dst)
|
||||
canny_destination = canny(lena)
|
||||
cv2.imshow("canny", canny_destination)
|
||||
cv2.waitKey(0)
|
||||
|
Loading…
Reference in New Issue
Block a user