mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Dijkstra algorithm with binary grid (#8802)
* Create TestShiva * Delete TestShiva * Implementation of the Dijkstra-Algorithm in a binary grid * Update double_ended_queue.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update least_common_multiple.py * Update sol1.py * Update pyproject.toml * Update pyproject.toml * https://github.com/astral-sh/ruff-pre-commit v0.0.274 --------- Co-authored-by: ShivaDahal99 <130563462+ShivaDahal99@users.noreply.github.com> Co-authored-by: jlhuhn <134317018+jlhuhn@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
07e6812888
commit
5b0890bd83
@ -15,8 +15,8 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: auto-walrus
|
- id: auto-walrus
|
||||||
|
|
||||||
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
rev: v0.0.272
|
rev: v0.0.274
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: ruff
|
||||||
|
|
||||||
|
@ -32,7 +32,7 @@ class Deque:
|
|||||||
the number of nodes
|
the number of nodes
|
||||||
"""
|
"""
|
||||||
|
|
||||||
__slots__ = ["_front", "_back", "_len"]
|
__slots__ = ("_front", "_back", "_len")
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class _Node:
|
class _Node:
|
||||||
@ -54,7 +54,7 @@ class Deque:
|
|||||||
the current node of the iteration.
|
the current node of the iteration.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
__slots__ = ["_cur"]
|
__slots__ = "_cur"
|
||||||
|
|
||||||
def __init__(self, cur: Deque._Node | None) -> None:
|
def __init__(self, cur: Deque._Node | None) -> None:
|
||||||
self._cur = cur
|
self._cur = cur
|
||||||
|
89
graphs/dijkstra_binary_grid.py
Normal file
89
graphs/dijkstra_binary_grid.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
"""
|
||||||
|
This script implements the Dijkstra algorithm on a binary grid.
|
||||||
|
The grid consists of 0s and 1s, where 1 represents
|
||||||
|
a walkable node and 0 represents an obstacle.
|
||||||
|
The algorithm finds the shortest path from a start node to a destination node.
|
||||||
|
Diagonal movement can be allowed or disallowed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from heapq import heappop, heappush
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def dijkstra(
|
||||||
|
grid: np.ndarray,
|
||||||
|
source: tuple[int, int],
|
||||||
|
destination: tuple[int, int],
|
||||||
|
allow_diagonal: bool,
|
||||||
|
) -> tuple[float | int, list[tuple[int, int]]]:
|
||||||
|
"""
|
||||||
|
Implements Dijkstra's algorithm on a binary grid.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
grid (np.ndarray): A 2D numpy array representing the grid.
|
||||||
|
1 represents a walkable node and 0 represents an obstacle.
|
||||||
|
source (Tuple[int, int]): A tuple representing the start node.
|
||||||
|
destination (Tuple[int, int]): A tuple representing the
|
||||||
|
destination node.
|
||||||
|
allow_diagonal (bool): A boolean determining whether
|
||||||
|
diagonal movements are allowed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[Union[float, int], List[Tuple[int, int]]]:
|
||||||
|
The shortest distance from the start node to the destination node
|
||||||
|
and the shortest path as a list of nodes.
|
||||||
|
|
||||||
|
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False)
|
||||||
|
(4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)])
|
||||||
|
|
||||||
|
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True)
|
||||||
|
(2.0, [(0, 0), (1, 1), (2, 2)])
|
||||||
|
|
||||||
|
>>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False)
|
||||||
|
(4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)])
|
||||||
|
"""
|
||||||
|
rows, cols = grid.shape
|
||||||
|
dx = [-1, 1, 0, 0]
|
||||||
|
dy = [0, 0, -1, 1]
|
||||||
|
if allow_diagonal:
|
||||||
|
dx += [-1, -1, 1, 1]
|
||||||
|
dy += [-1, 1, -1, 1]
|
||||||
|
|
||||||
|
queue, visited = [(0, source)], set()
|
||||||
|
matrix = np.full((rows, cols), np.inf)
|
||||||
|
matrix[source] = 0
|
||||||
|
predecessors = np.empty((rows, cols), dtype=object)
|
||||||
|
predecessors[source] = None
|
||||||
|
|
||||||
|
while queue:
|
||||||
|
(dist, (x, y)) = heappop(queue)
|
||||||
|
if (x, y) in visited:
|
||||||
|
continue
|
||||||
|
visited.add((x, y))
|
||||||
|
|
||||||
|
if (x, y) == destination:
|
||||||
|
path = []
|
||||||
|
while (x, y) != source:
|
||||||
|
path.append((x, y))
|
||||||
|
x, y = predecessors[x, y]
|
||||||
|
path.append(source) # add the source manually
|
||||||
|
path.reverse()
|
||||||
|
return matrix[destination], path
|
||||||
|
|
||||||
|
for i in range(len(dx)):
|
||||||
|
nx, ny = x + dx[i], y + dy[i]
|
||||||
|
if 0 <= nx < rows and 0 <= ny < cols:
|
||||||
|
next_node = grid[nx][ny]
|
||||||
|
if next_node == 1 and matrix[nx, ny] > dist + 1:
|
||||||
|
heappush(queue, (dist + 1, (nx, ny)))
|
||||||
|
matrix[nx, ny] = dist + 1
|
||||||
|
predecessors[nx, ny] = (x, y)
|
||||||
|
|
||||||
|
return np.inf, []
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
@ -67,7 +67,7 @@ def benchmark():
|
|||||||
|
|
||||||
|
|
||||||
class TestLeastCommonMultiple(unittest.TestCase):
|
class TestLeastCommonMultiple(unittest.TestCase):
|
||||||
test_inputs = [
|
test_inputs = (
|
||||||
(10, 20),
|
(10, 20),
|
||||||
(13, 15),
|
(13, 15),
|
||||||
(4, 31),
|
(4, 31),
|
||||||
@ -77,8 +77,8 @@ class TestLeastCommonMultiple(unittest.TestCase):
|
|||||||
(12, 25),
|
(12, 25),
|
||||||
(10, 25),
|
(10, 25),
|
||||||
(6, 9),
|
(6, 9),
|
||||||
]
|
)
|
||||||
expected_results = [20, 195, 124, 210, 1462, 60, 300, 50, 18]
|
expected_results = (20, 195, 124, 210, 1462, 60, 300, 50, 18)
|
||||||
|
|
||||||
def test_lcm_function(self):
|
def test_lcm_function(self):
|
||||||
for i, (first_num, second_num) in enumerate(self.test_inputs):
|
for i, (first_num, second_num) in enumerate(self.test_inputs):
|
||||||
|
@ -47,18 +47,18 @@ import os
|
|||||||
|
|
||||||
class PokerHand:
|
class PokerHand:
|
||||||
"""Create an object representing a Poker Hand based on an input of a
|
"""Create an object representing a Poker Hand based on an input of a
|
||||||
string which represents the best 5 card combination from the player's hand
|
string which represents the best 5-card combination from the player's hand
|
||||||
and board cards.
|
and board cards.
|
||||||
|
|
||||||
Attributes: (read-only)
|
Attributes: (read-only)
|
||||||
hand: string representing the hand consisting of five cards
|
hand: a string representing the hand consisting of five cards
|
||||||
|
|
||||||
Methods:
|
Methods:
|
||||||
compare_with(opponent): takes in player's hand (self) and
|
compare_with(opponent): takes in player's hand (self) and
|
||||||
opponent's hand (opponent) and compares both hands according to
|
opponent's hand (opponent) and compares both hands according to
|
||||||
the rules of Texas Hold'em.
|
the rules of Texas Hold'em.
|
||||||
Returns one of 3 strings (Win, Loss, Tie) based on whether
|
Returns one of 3 strings (Win, Loss, Tie) based on whether
|
||||||
player's hand is better than opponent's hand.
|
player's hand is better than the opponent's hand.
|
||||||
|
|
||||||
hand_name(): Returns a string made up of two parts: hand name
|
hand_name(): Returns a string made up of two parts: hand name
|
||||||
and high card.
|
and high card.
|
||||||
@ -66,11 +66,11 @@ class PokerHand:
|
|||||||
Supported operators:
|
Supported operators:
|
||||||
Rich comparison operators: <, >, <=, >=, ==, !=
|
Rich comparison operators: <, >, <=, >=, ==, !=
|
||||||
|
|
||||||
Supported builtin methods and functions:
|
Supported built-in methods and functions:
|
||||||
list.sort(), sorted()
|
list.sort(), sorted()
|
||||||
"""
|
"""
|
||||||
|
|
||||||
_HAND_NAME = [
|
_HAND_NAME = (
|
||||||
"High card",
|
"High card",
|
||||||
"One pair",
|
"One pair",
|
||||||
"Two pairs",
|
"Two pairs",
|
||||||
@ -81,10 +81,10 @@ class PokerHand:
|
|||||||
"Four of a kind",
|
"Four of a kind",
|
||||||
"Straight flush",
|
"Straight flush",
|
||||||
"Royal flush",
|
"Royal flush",
|
||||||
]
|
)
|
||||||
|
|
||||||
_CARD_NAME = [
|
_CARD_NAME = (
|
||||||
"", # placeholder as lists are zero indexed
|
"", # placeholder as tuples are zero-indexed
|
||||||
"One",
|
"One",
|
||||||
"Two",
|
"Two",
|
||||||
"Three",
|
"Three",
|
||||||
@ -99,7 +99,7 @@ class PokerHand:
|
|||||||
"Queen",
|
"Queen",
|
||||||
"King",
|
"King",
|
||||||
"Ace",
|
"Ace",
|
||||||
]
|
)
|
||||||
|
|
||||||
def __init__(self, hand: str) -> None:
|
def __init__(self, hand: str) -> None:
|
||||||
"""
|
"""
|
||||||
|
@ -103,6 +103,7 @@ max-complexity = 17 # default: 10
|
|||||||
"machine_learning/linear_discriminant_analysis.py" = ["ARG005"]
|
"machine_learning/linear_discriminant_analysis.py" = ["ARG005"]
|
||||||
"machine_learning/sequential_minimum_optimization.py" = ["SIM115"]
|
"machine_learning/sequential_minimum_optimization.py" = ["SIM115"]
|
||||||
"matrix/sherman_morrison.py" = ["SIM103", "SIM114"]
|
"matrix/sherman_morrison.py" = ["SIM103", "SIM114"]
|
||||||
|
"other/l*u_cache.py" = ["RUF012"]
|
||||||
"physics/newtons_second_law_of_motion.py" = ["BLE001"]
|
"physics/newtons_second_law_of_motion.py" = ["BLE001"]
|
||||||
"project_euler/problem_099/sol1.py" = ["SIM115"]
|
"project_euler/problem_099/sol1.py" = ["SIM115"]
|
||||||
"sorts/external_sort.py" = ["SIM115"]
|
"sorts/external_sort.py" = ["SIM115"]
|
||||||
|
Loading…
Reference in New Issue
Block a user