mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Create minmax.py (#7409)
* Create minmax.py * Update minmax.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
2ca695b0fe
commit
5bfcab1aa4
69
backtracking/minmax.py
Normal file
69
backtracking/minmax.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
"""
|
||||||
|
Minimax helps to achieve maximum score in a game by checking all possible moves.
|
||||||
|
|
||||||
|
"""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def minimax(
|
||||||
|
depth: int, node_index: int, is_max: bool, scores: list[int], height: float
|
||||||
|
) -> int:
|
||||||
|
"""
|
||||||
|
depth is current depth in game tree.
|
||||||
|
node_index is index of current node in scores[].
|
||||||
|
scores[] contains the leaves of game tree.
|
||||||
|
height is maximum height of game tree.
|
||||||
|
|
||||||
|
>>> scores = [90, 23, 6, 33, 21, 65, 123, 34423]
|
||||||
|
>>> height = math.log(len(scores), 2)
|
||||||
|
>>> minimax(0, 0, True, scores, height)
|
||||||
|
65
|
||||||
|
>>> minimax(-1, 0, True, scores, height)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
ValueError: Depth cannot be less than 0
|
||||||
|
>>> minimax(0, 0, True, [], 2)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
ValueError: Scores cannot be empty
|
||||||
|
>>> scores = [3, 5, 2, 9, 12, 5, 23, 23]
|
||||||
|
>>> height = math.log(len(scores), 2)
|
||||||
|
>>> minimax(0, 0, True, scores, height)
|
||||||
|
12
|
||||||
|
"""
|
||||||
|
|
||||||
|
if depth < 0:
|
||||||
|
raise ValueError("Depth cannot be less than 0")
|
||||||
|
|
||||||
|
if not scores:
|
||||||
|
raise ValueError("Scores cannot be empty")
|
||||||
|
|
||||||
|
if depth == height:
|
||||||
|
return scores[node_index]
|
||||||
|
|
||||||
|
return (
|
||||||
|
max(
|
||||||
|
minimax(depth + 1, node_index * 2, False, scores, height),
|
||||||
|
minimax(depth + 1, node_index * 2 + 1, False, scores, height),
|
||||||
|
)
|
||||||
|
if is_max
|
||||||
|
else min(
|
||||||
|
minimax(depth + 1, node_index * 2, True, scores, height),
|
||||||
|
minimax(depth + 1, node_index * 2 + 1, True, scores, height),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
scores = [90, 23, 6, 33, 21, 65, 123, 34423]
|
||||||
|
height = math.log(len(scores), 2)
|
||||||
|
print(f"Optimal value : {minimax(0, 0, True, scores, height)}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user