ENH: Added a functionality to make it possible to reconstruct an optimal subset for the dynamic programming problem (#1139)

* function for the knapsack problem which returns one of the optimal subsets

* function for the knapsack problem which returns one of the optimal subsets

* function for the knapsack problem which returns one of the optimal subsets

* function for the knapsack problem which returns one of the optimal subsets

* function for the knapsack problem which returns one of the optimal subsets

* some pep8 cleanup too
This commit is contained in:
Maxwell Aladago 2019-08-19 01:39:39 -04:00 committed by Christian Clauss
parent 05c9a05f36
commit 5d46a4dd7b

View File

@ -1,6 +1,12 @@
"""
Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack.
Given weights and values of n items, put these items in a knapsack of
capacity W to get the maximum total value in the knapsack.
Note that only the integer weights 0-1 knapsack problem is solvable
using dynamic programming.
"""
def MF_knapsack(i, wt, val, j):
'''
This code involves the concept of memory functions. Here we solve the subproblems which are needed
@ -12,21 +18,107 @@ def MF_knapsack(i,wt,val,j):
if j < wt[i-1]:
val = MF_knapsack(i-1, wt, val, j)
else:
val = max(MF_knapsack(i - 1,wt,val,j),MF_knapsack(i - 1,wt,val,j - wt[i - 1]) + val[i - 1])
val = max(MF_knapsack(i-1, wt, val, j),
MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1])
F[i][j] = val
return F[i][j]
def knapsack(W, wt, val, n):
dp = [[0 for i in range(W+1)]for j in range(n+1)]
for i in range(1,n+1):
for w in range(1, W+1):
if(wt[i-1]<=w):
if wt[i-1] <= w:
dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w])
else:
dp[i][w] = dp[i-1][w]
return dp[n][w]
return dp[n][W], dp
def knapsack_with_example_solution(W: int, wt: list, val:list):
"""
Solves the integer weights knapsack problem returns one of
the several possible optimal subsets.
Parameters
---------
W: int, the total maximum weight for the given knapsack problem.
wt: list, the vector of weights for all items where wt[i] is the weight
of the ith item.
val: list, the vector of values for all items where val[i] is the value
of te ith item
Returns
-------
optimal_val: float, the optimal value for the given knapsack problem
example_optional_set: set, the indices of one of the optimal subsets
which gave rise to the optimal value.
Examples
-------
>>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])
(142, {2, 3, 4})
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])
(8, {3, 4})
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4])
Traceback (most recent call last):
...
ValueError: The number of weights must be the same as the number of values.
But got 4 weights and 3 values
"""
if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))):
raise ValueError("Both the weights and values vectors must be either lists or tuples")
num_items = len(wt)
if num_items != len(val):
raise ValueError("The number of weights must be the "
"same as the number of values.\nBut "
"got {} weights and {} values".format(num_items, len(val)))
for i in range(num_items):
if not isinstance(wt[i], int):
raise TypeError("All weights must be integers but "
"got weight of type {} at index {}".format(type(wt[i]), i))
optimal_val, dp_table = knapsack(W, wt, val, num_items)
example_optional_set = set()
_construct_solution(dp_table, wt, num_items, W, example_optional_set)
return optimal_val, example_optional_set
def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set):
"""
Recursively reconstructs one of the optimal subsets given
a filled DP table and the vector of weights
Parameters
---------
dp: list of list, the table of a solved integer weight dynamic programming problem
wt: list or tuple, the vector of weights of the items
i: int, the index of the item under consideration
j: int, the current possible maximum weight
optimal_set: set, the optimal subset so far. This gets modified by the function.
Returns
-------
None
"""
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(dp, wt, i - 1, j, optimal_set)
else:
optimal_set.add(i)
_construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set)
if __name__ == '__main__':
'''
@ -37,6 +129,15 @@ if __name__ == '__main__':
n = 4
w = 6
F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
print(knapsack(w,wt,val,n))
optimal_solution, _ = knapsack(w,wt,val, n)
print(optimal_solution)
print(MF_knapsack(n,wt,val,w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)