mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
GitHub Action formats our code with psf/black (#1569)
* GitHub Action formats our code with psf/black @poyea Your review please. * fixup! Format Python code with psf/black push
This commit is contained in:
parent
52cf668617
commit
5df8aec66c
36
.github/workflows/autoblack.yml
vendored
36
.github/workflows/autoblack.yml
vendored
@ -1,34 +1,24 @@
|
||||
# GitHub Action that uses Black to reformat the Python code in an incoming pull request.
|
||||
# If all Python code in the pull request is complient with Black then this Action does nothing.
|
||||
# Othewrwise, Black is run and its changes are committed back to the incoming pull request.
|
||||
# GitHub Action that uses Black to reformat Python code (if needed) when doing a git push.
|
||||
# If all Python code in the repo is complient with Black then this Action does nothing.
|
||||
# Otherwise, Black is run and its changes are committed to the repo.
|
||||
# https://github.com/cclauss/autoblack
|
||||
|
||||
name: autoblack
|
||||
on: [pull_request]
|
||||
name: autoblack_push
|
||||
on: [push]
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
max-parallel: 1
|
||||
matrix:
|
||||
python-version: [3.7]
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install psf/black
|
||||
run: pip install black
|
||||
- name: Run black --check .
|
||||
run: black --check .
|
||||
- name: If needed, commit black changes to the pull request
|
||||
- uses: actions/setup-python@v1
|
||||
- run: pip install black
|
||||
- run: black --check .
|
||||
- name: If needed, commit black changes to a new pull request
|
||||
if: failure()
|
||||
run: |
|
||||
black .
|
||||
git config --global user.name 'autoblack'
|
||||
git config --global user.email 'cclauss@users.noreply.github.com'
|
||||
git config --global user.name github-actions
|
||||
git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com'
|
||||
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY
|
||||
git checkout $GITHUB_HEAD_REF
|
||||
git commit -am "fixup: Format Python code with psf/black"
|
||||
git push
|
||||
git commit -am "fixup! Format Python code with psf/black push"
|
||||
git push --force origin HEAD:$GITHUB_REF
|
||||
|
@ -41,19 +41,21 @@ def miller_rabin(n, allow_probable=False):
|
||||
"A return value of True indicates a probable prime."
|
||||
)
|
||||
# array bounds provided by analysis
|
||||
bounds = [2_047,
|
||||
1_373_653,
|
||||
25_326_001,
|
||||
3_215_031_751,
|
||||
2_152_302_898_747,
|
||||
3_474_749_660_383,
|
||||
341_550_071_728_321,
|
||||
1,
|
||||
3_825_123_056_546_413_051,
|
||||
1,
|
||||
1,
|
||||
318_665_857_834_031_151_167_461,
|
||||
3_317_044_064_679_887_385_961_981]
|
||||
bounds = [
|
||||
2_047,
|
||||
1_373_653,
|
||||
25_326_001,
|
||||
3_215_031_751,
|
||||
2_152_302_898_747,
|
||||
3_474_749_660_383,
|
||||
341_550_071_728_321,
|
||||
1,
|
||||
3_825_123_056_546_413_051,
|
||||
1,
|
||||
1,
|
||||
318_665_857_834_031_151_167_461,
|
||||
3_317_044_064_679_887_385_961_981,
|
||||
]
|
||||
|
||||
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
|
||||
for idx, _p in enumerate(bounds, 1):
|
||||
@ -131,5 +133,5 @@ def test_miller_rabin():
|
||||
# upper limit for probabilistic test
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
test_miller_rabin()
|
||||
|
@ -1,8 +1,8 @@
|
||||
def find_primitive(n):
|
||||
for r in range(1, n):
|
||||
li = []
|
||||
for x in range(n-1):
|
||||
val = pow(r,x,n)
|
||||
for x in range(n - 1):
|
||||
val = pow(r, x, n)
|
||||
if val in li:
|
||||
break
|
||||
li.append(val)
|
||||
@ -11,16 +11,15 @@ def find_primitive(n):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
q = int(input('Enter a prime number q: '))
|
||||
q = int(input("Enter a prime number q: "))
|
||||
a = find_primitive(q)
|
||||
a_private = int(input('Enter private key of A: '))
|
||||
a_private = int(input("Enter private key of A: "))
|
||||
a_public = pow(a, a_private, q)
|
||||
b_private = int(input('Enter private key of B: '))
|
||||
b_private = int(input("Enter private key of B: "))
|
||||
b_public = pow(a, b_private, q)
|
||||
|
||||
a_secret = pow(b_public, a_private, q)
|
||||
b_secret = pow(a_public, b_private, q)
|
||||
|
||||
print('The key value generated by A is: ', a_secret)
|
||||
print('The key value generated by B is: ', b_secret)
|
||||
|
||||
print("The key value generated by A is: ", a_secret)
|
||||
print("The key value generated by B is: ", b_secret)
|
||||
|
@ -22,7 +22,7 @@ def display(tree): # In Order traversal of the tree
|
||||
|
||||
|
||||
def depth_of_tree(
|
||||
tree
|
||||
tree,
|
||||
): # This is the recursive function to find the depth of binary tree.
|
||||
if tree is None:
|
||||
return 0
|
||||
@ -36,7 +36,7 @@ def depth_of_tree(
|
||||
|
||||
|
||||
def is_full_binary_tree(
|
||||
tree
|
||||
tree,
|
||||
): # This functions returns that is it full binary tree or not?
|
||||
if tree is None:
|
||||
return True
|
||||
|
@ -172,7 +172,6 @@ def main():
|
||||
args = input()
|
||||
|
||||
print("good by!")
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -77,9 +77,10 @@ class MinHeap:
|
||||
|
||||
if smallest != idx:
|
||||
array[idx], array[smallest] = array[smallest], array[idx]
|
||||
self.idx_of_element[array[idx]], self.idx_of_element[
|
||||
array[smallest]
|
||||
] = (
|
||||
(
|
||||
self.idx_of_element[array[idx]],
|
||||
self.idx_of_element[array[smallest]],
|
||||
) = (
|
||||
self.idx_of_element[array[smallest]],
|
||||
self.idx_of_element[array[idx]],
|
||||
)
|
||||
|
@ -23,9 +23,7 @@ class LinkedList: # making main class named linked list
|
||||
def deleteHead(self):
|
||||
temp = self.head
|
||||
self.head = self.head.next # oldHead <--> 2ndElement(head)
|
||||
self.head.previous = (
|
||||
None
|
||||
) # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
|
||||
self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
|
||||
if self.head is None:
|
||||
self.tail = None # if empty linked list
|
||||
return temp
|
||||
|
@ -1,6 +1,7 @@
|
||||
# Recursive Prorgam to create a Linked List from a sequence and
|
||||
# print a string representation of it.
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, data=None):
|
||||
self.data = data
|
||||
@ -17,7 +18,6 @@ class Node:
|
||||
return string_rep
|
||||
|
||||
|
||||
|
||||
def make_linked_list(elements_list):
|
||||
"""Creates a Linked List from the elements of the given sequence
|
||||
(list/tuple) and returns the head of the Linked List."""
|
||||
@ -36,8 +36,7 @@ def make_linked_list(elements_list):
|
||||
return head
|
||||
|
||||
|
||||
|
||||
list_data = [1,3,5,32,44,12,43]
|
||||
list_data = [1, 3, 5, 32, 44, 12, 43]
|
||||
print(f"List: {list_data}")
|
||||
print("Creating Linked List from List.")
|
||||
linked_list = make_linked_list(list_data)
|
||||
|
@ -1,5 +1,6 @@
|
||||
# Program to print the elements of a linked list in reverse
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, data=None):
|
||||
self.data = data
|
||||
@ -16,7 +17,6 @@ class Node:
|
||||
return string_rep
|
||||
|
||||
|
||||
|
||||
def make_linked_list(elements_list):
|
||||
"""Creates a Linked List from the elements of the given sequence
|
||||
(list/tuple) and returns the head of the Linked List."""
|
||||
@ -34,6 +34,7 @@ def make_linked_list(elements_list):
|
||||
current = current.next
|
||||
return head
|
||||
|
||||
|
||||
def print_reverse(head_node):
|
||||
"""Prints the elements of the given Linked List in reverse order"""
|
||||
|
||||
@ -46,8 +47,7 @@ def print_reverse(head_node):
|
||||
print(head_node.data)
|
||||
|
||||
|
||||
|
||||
list_data = [14,52,14,12,43]
|
||||
list_data = [14, 52, 14, 12, 43]
|
||||
linked_list = make_linked_list(list_data)
|
||||
print("Linked List:")
|
||||
print(linked_list)
|
||||
|
@ -48,8 +48,9 @@ def longest_subsequence(array: List[int]) -> List[int]: # This function is recu
|
||||
return temp_array
|
||||
else:
|
||||
return longest_subseq
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -6,6 +6,7 @@
|
||||
#############################
|
||||
from typing import List
|
||||
|
||||
|
||||
def CeilIndex(v, l, r, key):
|
||||
while r - l > 1:
|
||||
m = (l + r) // 2
|
||||
@ -49,4 +50,5 @@ def LongestIncreasingSubsequenceLength(v: List[int]) -> int:
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -75,6 +75,7 @@ if __name__ == "__main__":
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from random import randint
|
||||
|
||||
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
|
||||
tim = []
|
||||
for i in inputs:
|
||||
|
@ -2,8 +2,8 @@ if __name__ == "__main__":
|
||||
import socket # Import socket module
|
||||
|
||||
ONE_CONNECTION_ONLY = (
|
||||
True
|
||||
) # Set this to False if you wish to continuously accept connections
|
||||
True # Set this to False if you wish to continuously accept connections
|
||||
)
|
||||
|
||||
filename = "mytext.txt"
|
||||
port = 12312 # Reserve a port for your service.
|
||||
|
@ -9,10 +9,12 @@ def ceil(x) -> int:
|
||||
>>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
|
||||
True
|
||||
"""
|
||||
return x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x)
|
||||
return (
|
||||
x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -28,7 +28,7 @@ def factorial(input_number: int) -> int:
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -24,7 +24,7 @@ def factorial(n: int) -> int:
|
||||
return 1 if n == 0 or n == 1 else n * factorial(n - 1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -9,10 +9,12 @@ def floor(x) -> int:
|
||||
>>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
|
||||
True
|
||||
"""
|
||||
return x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1)
|
||||
return (
|
||||
x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -50,7 +50,7 @@ def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
|
||||
>>> gaussian(2523, mu=234234, sigma=3425)
|
||||
0.0
|
||||
"""
|
||||
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2)
|
||||
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-((x - mu) ** 2) / 2 * sigma ** 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -21,7 +21,7 @@ def perfect_square(num: int) -> bool:
|
||||
return math.sqrt(num) * math.sqrt(num) == num
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -7,28 +7,42 @@ import input_data
|
||||
random_numer = 42
|
||||
|
||||
np.random.seed(random_numer)
|
||||
|
||||
|
||||
def ReLu(x):
|
||||
mask = (x>0) * 1.0
|
||||
return mask *x
|
||||
mask = (x > 0) * 1.0
|
||||
return mask * x
|
||||
|
||||
|
||||
def d_ReLu(x):
|
||||
mask = (x>0) * 1.0
|
||||
mask = (x > 0) * 1.0
|
||||
return mask
|
||||
|
||||
|
||||
def arctan(x):
|
||||
return np.arctan(x)
|
||||
|
||||
|
||||
def d_arctan(x):
|
||||
return 1 / (1 + x ** 2)
|
||||
|
||||
|
||||
def log(x):
|
||||
return 1 / ( 1+ np.exp(-1*x))
|
||||
return 1 / (1 + np.exp(-1 * x))
|
||||
|
||||
|
||||
def d_log(x):
|
||||
return log(x) * (1 - log(x))
|
||||
|
||||
|
||||
def tanh(x):
|
||||
return np.tanh(x)
|
||||
|
||||
|
||||
def d_tanh(x):
|
||||
return 1 - np.tanh(x) ** 2
|
||||
|
||||
|
||||
def plot(samples):
|
||||
fig = plt.figure(figsize=(4, 4))
|
||||
gs = gridspec.GridSpec(4, 4)
|
||||
@ -36,104 +50,140 @@ def plot(samples):
|
||||
|
||||
for i, sample in enumerate(samples):
|
||||
ax = plt.subplot(gs[i])
|
||||
plt.axis('off')
|
||||
plt.axis("off")
|
||||
ax.set_xticklabels([])
|
||||
ax.set_yticklabels([])
|
||||
ax.set_aspect('equal')
|
||||
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
|
||||
ax.set_aspect("equal")
|
||||
plt.imshow(sample.reshape(28, 28), cmap="Greys_r")
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
# 1. Load Data and declare hyper
|
||||
print('--------- Load Data ----------')
|
||||
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
|
||||
print("--------- Load Data ----------")
|
||||
mnist = input_data.read_data_sets("MNIST_data", one_hot=False)
|
||||
temp = mnist.test
|
||||
images, labels = temp.images, temp.labels
|
||||
images, labels = shuffle(np.asarray(images),np.asarray(labels))
|
||||
images, labels = shuffle(np.asarray(images), np.asarray(labels))
|
||||
num_epoch = 10
|
||||
learing_rate = 0.00009
|
||||
G_input = 100
|
||||
hidden_input,hidden_input2,hidden_input3 = 128,256,346
|
||||
hidden_input4,hidden_input5,hidden_input6 = 480,560,686
|
||||
hidden_input, hidden_input2, hidden_input3 = 128, 256, 346
|
||||
hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686
|
||||
|
||||
|
||||
|
||||
print('--------- Declare Hyper Parameters ----------')
|
||||
print("--------- Declare Hyper Parameters ----------")
|
||||
# 2. Declare Weights
|
||||
D_W1 = np.random.normal(size=(784,hidden_input),scale=(1. / np.sqrt(784 / 2.))) *0.002
|
||||
D_W1 = (
|
||||
np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002
|
||||
)
|
||||
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
D_b1 = np.zeros(hidden_input)
|
||||
|
||||
D_W2 = np.random.normal(size=(hidden_input,1),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002
|
||||
D_W2 = (
|
||||
np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0)))
|
||||
* 0.002
|
||||
)
|
||||
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
|
||||
D_b2 = np.zeros(1)
|
||||
|
||||
|
||||
G_W1 = np.random.normal(size=(G_input,hidden_input),scale=(1. / np.sqrt(G_input / 2.))) *0.002
|
||||
G_W1 = (
|
||||
np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0)))
|
||||
* 0.002
|
||||
)
|
||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
G_b1 = np.zeros(hidden_input)
|
||||
|
||||
G_W2 = np.random.normal(size=(hidden_input,hidden_input2),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002
|
||||
G_W2 = (
|
||||
np.random.normal(
|
||||
size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0))
|
||||
)
|
||||
* 0.002
|
||||
)
|
||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
G_b2 = np.zeros(hidden_input2)
|
||||
|
||||
G_W3 = np.random.normal(size=(hidden_input2,hidden_input3),scale=(1. / np.sqrt(hidden_input2 / 2.))) *0.002
|
||||
G_W3 = (
|
||||
np.random.normal(
|
||||
size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0))
|
||||
)
|
||||
* 0.002
|
||||
)
|
||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
G_b3 = np.zeros(hidden_input3)
|
||||
|
||||
G_W4 = np.random.normal(size=(hidden_input3,hidden_input4),scale=(1. / np.sqrt(hidden_input3 / 2.))) *0.002
|
||||
G_W4 = (
|
||||
np.random.normal(
|
||||
size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0))
|
||||
)
|
||||
* 0.002
|
||||
)
|
||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
G_b4 = np.zeros(hidden_input4)
|
||||
|
||||
G_W5 = np.random.normal(size=(hidden_input4,hidden_input5),scale=(1. / np.sqrt(hidden_input4 / 2.))) *0.002
|
||||
G_W5 = (
|
||||
np.random.normal(
|
||||
size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0))
|
||||
)
|
||||
* 0.002
|
||||
)
|
||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
G_b5 = np.zeros(hidden_input5)
|
||||
|
||||
G_W6 = np.random.normal(size=(hidden_input5,hidden_input6),scale=(1. / np.sqrt(hidden_input5 / 2.))) *0.002
|
||||
G_W6 = (
|
||||
np.random.normal(
|
||||
size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0))
|
||||
)
|
||||
* 0.002
|
||||
)
|
||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||
G_b6 = np.zeros(hidden_input6)
|
||||
|
||||
G_W7 = np.random.normal(size=(hidden_input6,784),scale=(1. / np.sqrt(hidden_input6 / 2.))) *0.002
|
||||
G_W7 = (
|
||||
np.random.normal(
|
||||
size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0))
|
||||
)
|
||||
* 0.002
|
||||
)
|
||||
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
|
||||
G_b7 = np.zeros(784)
|
||||
|
||||
# 3. For Adam Optimzier
|
||||
v1,m1 = 0,0
|
||||
v2,m2 = 0,0
|
||||
v3,m3 = 0,0
|
||||
v4,m4 = 0,0
|
||||
v1, m1 = 0, 0
|
||||
v2, m2 = 0, 0
|
||||
v3, m3 = 0, 0
|
||||
v4, m4 = 0, 0
|
||||
|
||||
v5,m5 = 0,0
|
||||
v6,m6 = 0,0
|
||||
v7,m7 = 0,0
|
||||
v8,m8 = 0,0
|
||||
v9,m9 = 0,0
|
||||
v10,m10 = 0,0
|
||||
v11,m11 = 0,0
|
||||
v12,m12 = 0,0
|
||||
v5, m5 = 0, 0
|
||||
v6, m6 = 0, 0
|
||||
v7, m7 = 0, 0
|
||||
v8, m8 = 0, 0
|
||||
v9, m9 = 0, 0
|
||||
v10, m10 = 0, 0
|
||||
v11, m11 = 0, 0
|
||||
v12, m12 = 0, 0
|
||||
|
||||
v13,m13 = 0,0
|
||||
v14,m14 = 0,0
|
||||
v13, m13 = 0, 0
|
||||
v14, m14 = 0, 0
|
||||
|
||||
v15,m15 = 0,0
|
||||
v16,m16 = 0,0
|
||||
v15, m15 = 0, 0
|
||||
v16, m16 = 0, 0
|
||||
|
||||
v17,m17 = 0,0
|
||||
v18,m18 = 0,0
|
||||
v17, m17 = 0, 0
|
||||
v18, m18 = 0, 0
|
||||
|
||||
|
||||
beta_1,beta_2,eps = 0.9,0.999,0.00000001
|
||||
beta_1, beta_2, eps = 0.9, 0.999, 0.00000001
|
||||
|
||||
print('--------- Started Training ----------')
|
||||
print("--------- Started Training ----------")
|
||||
for iter in range(num_epoch):
|
||||
|
||||
random_int = np.random.randint(len(images) - 5)
|
||||
current_image = np.expand_dims(images[random_int],axis=0)
|
||||
current_image = np.expand_dims(images[random_int], axis=0)
|
||||
|
||||
# Func: Generate The first Fake Data
|
||||
Z = np.random.uniform(-1., 1., size=[1, G_input])
|
||||
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
|
||||
Gl1 = Z.dot(G_W1) + G_b1
|
||||
Gl1A = arctan(Gl1)
|
||||
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||||
@ -164,38 +214,38 @@ for iter in range(num_epoch):
|
||||
Dl2_fA = log(Dl2_f)
|
||||
|
||||
# Func: Cost D
|
||||
D_cost = -np.log(Dl2_rA) + np.log(1.0- Dl2_fA)
|
||||
D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA)
|
||||
|
||||
# Func: Gradient
|
||||
grad_f_w2_part_1 = 1/(1.0- Dl2_fA)
|
||||
grad_f_w2_part_2 = d_log(Dl2_f)
|
||||
grad_f_w2_part_3 = Dl1_fA
|
||||
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
|
||||
grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA)
|
||||
grad_f_w2_part_2 = d_log(Dl2_f)
|
||||
grad_f_w2_part_3 = Dl1_fA
|
||||
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
|
||||
grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2
|
||||
|
||||
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
|
||||
grad_f_w1_part_2 = d_ReLu(Dl1_f)
|
||||
grad_f_w1_part_3 = current_fake_data
|
||||
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
|
||||
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
|
||||
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
|
||||
grad_f_w1_part_2 = d_ReLu(Dl1_f)
|
||||
grad_f_w1_part_3 = current_fake_data
|
||||
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
|
||||
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
|
||||
|
||||
grad_r_w2_part_1 = - 1/Dl2_rA
|
||||
grad_r_w2_part_2 = d_log(Dl2_r)
|
||||
grad_r_w2_part_3 = Dl1_rA
|
||||
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
|
||||
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
|
||||
grad_r_w2_part_1 = -1 / Dl2_rA
|
||||
grad_r_w2_part_2 = d_log(Dl2_r)
|
||||
grad_r_w2_part_3 = Dl1_rA
|
||||
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
|
||||
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
|
||||
|
||||
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
|
||||
grad_r_w1_part_2 = d_ReLu(Dl1_r)
|
||||
grad_r_w1_part_3 = current_image
|
||||
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
|
||||
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
|
||||
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
|
||||
grad_r_w1_part_2 = d_ReLu(Dl1_r)
|
||||
grad_r_w1_part_3 = current_image
|
||||
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
|
||||
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
|
||||
|
||||
grad_w1 =grad_f_w1 + grad_r_w1
|
||||
grad_b1 =grad_f_b1 + grad_r_b1
|
||||
grad_w1 = grad_f_w1 + grad_r_w1
|
||||
grad_b1 = grad_f_b1 + grad_r_b1
|
||||
|
||||
grad_w2 =grad_f_w2 + grad_r_w2
|
||||
grad_b2 =grad_f_b2 + grad_r_b2
|
||||
grad_w2 = grad_f_w2 + grad_r_w2
|
||||
grad_b2 = grad_f_b2 + grad_r_b2
|
||||
|
||||
# ---- Update Gradient ----
|
||||
m1 = beta_1 * m1 + (1 - beta_1) * grad_w1
|
||||
@ -210,14 +260,22 @@ for iter in range(num_epoch):
|
||||
m4 = beta_1 * m4 + (1 - beta_1) * grad_b2
|
||||
v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2
|
||||
|
||||
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 /(1-beta_2) ) + eps)) * (m1/(1-beta_1))
|
||||
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 /(1-beta_2) ) + eps)) * (m2/(1-beta_1))
|
||||
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * (
|
||||
m1 / (1 - beta_1)
|
||||
)
|
||||
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * (
|
||||
m2 / (1 - beta_1)
|
||||
)
|
||||
|
||||
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 /(1-beta_2) ) + eps)) * (m3/(1-beta_1))
|
||||
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 /(1-beta_2) ) + eps)) * (m4/(1-beta_1))
|
||||
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * (
|
||||
m3 / (1 - beta_1)
|
||||
)
|
||||
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * (
|
||||
m4 / (1 - beta_1)
|
||||
)
|
||||
|
||||
# Func: Forward Feed for G
|
||||
Z = np.random.uniform(-1., 1., size=[1, G_input])
|
||||
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
|
||||
Gl1 = Z.dot(G_W1) + G_b1
|
||||
Gl1A = arctan(Gl1)
|
||||
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||||
@ -244,7 +302,9 @@ for iter in range(num_epoch):
|
||||
G_cost = -np.log(Dl2_A)
|
||||
|
||||
# Func: Gradient
|
||||
grad_G_w7_part_1 = ((-1/Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(D_W1.T)
|
||||
grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(
|
||||
D_W1.T
|
||||
)
|
||||
grad_G_w7_part_2 = d_log(Gl7)
|
||||
grad_G_w7_part_3 = Gl6A
|
||||
grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1)
|
||||
@ -254,31 +314,31 @@ for iter in range(num_epoch):
|
||||
grad_G_w6_part_2 = d_ReLu(Gl6)
|
||||
grad_G_w6_part_3 = Gl5A
|
||||
grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2)
|
||||
grad_G_b6 = (grad_G_w6_part_1 * grad_G_w6_part_2)
|
||||
grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2
|
||||
|
||||
grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T)
|
||||
grad_G_w5_part_2 = d_tanh(Gl5)
|
||||
grad_G_w5_part_3 = Gl4A
|
||||
grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2)
|
||||
grad_G_b5 = (grad_G_w5_part_1 * grad_G_w5_part_2)
|
||||
grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2
|
||||
|
||||
grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T)
|
||||
grad_G_w4_part_2 = d_ReLu(Gl4)
|
||||
grad_G_w4_part_3 = Gl3A
|
||||
grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2)
|
||||
grad_G_b4 = (grad_G_w4_part_1 * grad_G_w4_part_2)
|
||||
grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2
|
||||
|
||||
grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T)
|
||||
grad_G_w3_part_2 = d_arctan(Gl3)
|
||||
grad_G_w3_part_3 = Gl2A
|
||||
grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2)
|
||||
grad_G_b3 = (grad_G_w3_part_1 * grad_G_w3_part_2)
|
||||
grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2
|
||||
|
||||
grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T)
|
||||
grad_G_w2_part_2 = d_ReLu(Gl2)
|
||||
grad_G_w2_part_3 = Gl1A
|
||||
grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2)
|
||||
grad_G_b2 = (grad_G_w2_part_1 * grad_G_w2_part_2)
|
||||
grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2
|
||||
|
||||
grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T)
|
||||
grad_G_w1_part_2 = d_arctan(Gl1)
|
||||
@ -329,29 +389,57 @@ for iter in range(num_epoch):
|
||||
m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7
|
||||
v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2
|
||||
|
||||
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 /(1-beta_2) ) + eps)) * (m5/(1-beta_1))
|
||||
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 /(1-beta_2) ) + eps)) * (m6/(1-beta_1))
|
||||
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * (
|
||||
m5 / (1 - beta_1)
|
||||
)
|
||||
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * (
|
||||
m6 / (1 - beta_1)
|
||||
)
|
||||
|
||||
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 /(1-beta_2) ) + eps)) * (m7/(1-beta_1))
|
||||
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 /(1-beta_2) ) + eps)) * (m8/(1-beta_1))
|
||||
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * (
|
||||
m7 / (1 - beta_1)
|
||||
)
|
||||
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * (
|
||||
m8 / (1 - beta_1)
|
||||
)
|
||||
|
||||
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 /(1-beta_2) ) + eps)) * (m9/(1-beta_1))
|
||||
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 /(1-beta_2) ) + eps)) * (m10/(1-beta_1))
|
||||
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * (
|
||||
m9 / (1 - beta_1)
|
||||
)
|
||||
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * (
|
||||
m10 / (1 - beta_1)
|
||||
)
|
||||
|
||||
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 /(1-beta_2) ) + eps)) * (m11/(1-beta_1))
|
||||
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 /(1-beta_2) ) + eps)) * (m12/(1-beta_1))
|
||||
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * (
|
||||
m11 / (1 - beta_1)
|
||||
)
|
||||
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * (
|
||||
m12 / (1 - beta_1)
|
||||
)
|
||||
|
||||
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 /(1-beta_2) ) + eps)) * (m13/(1-beta_1))
|
||||
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 /(1-beta_2) ) + eps)) * (m14/(1-beta_1))
|
||||
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * (
|
||||
m13 / (1 - beta_1)
|
||||
)
|
||||
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * (
|
||||
m14 / (1 - beta_1)
|
||||
)
|
||||
|
||||
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 /(1-beta_2) ) + eps)) * (m15/(1-beta_1))
|
||||
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 /(1-beta_2) ) + eps)) * (m16/(1-beta_1))
|
||||
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * (
|
||||
m15 / (1 - beta_1)
|
||||
)
|
||||
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * (
|
||||
m16 / (1 - beta_1)
|
||||
)
|
||||
|
||||
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 /(1-beta_2) ) + eps)) * (m17/(1-beta_1))
|
||||
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 /(1-beta_2) ) + eps)) * (m18/(1-beta_1))
|
||||
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * (
|
||||
m17 / (1 - beta_1)
|
||||
)
|
||||
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * (
|
||||
m18 / (1 - beta_1)
|
||||
)
|
||||
|
||||
# --- Print Error ----
|
||||
#print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
||||
# print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
||||
|
||||
if iter == 0:
|
||||
learing_rate = learing_rate * 0.01
|
||||
@ -359,12 +447,20 @@ for iter in range(num_epoch):
|
||||
learing_rate = learing_rate * 0.01
|
||||
|
||||
# ---- Print to Out put ----
|
||||
if iter%10 == 0:
|
||||
if iter % 10 == 0:
|
||||
|
||||
print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
||||
print('--------- Show Example Result See Tab Above ----------')
|
||||
print('--------- Wait for the image to load ---------')
|
||||
Z = np.random.uniform(-1., 1., size=[16, G_input])
|
||||
print(
|
||||
"Current Iter: ",
|
||||
iter,
|
||||
" Current D cost:",
|
||||
D_cost,
|
||||
" Current G cost: ",
|
||||
G_cost,
|
||||
end="\r",
|
||||
)
|
||||
print("--------- Show Example Result See Tab Above ----------")
|
||||
print("--------- Wait for the image to load ---------")
|
||||
Z = np.random.uniform(-1.0, 1.0, size=[16, G_input])
|
||||
|
||||
Gl1 = Z.dot(G_W1) + G_b1
|
||||
Gl1A = arctan(Gl1)
|
||||
@ -384,8 +480,19 @@ for iter in range(num_epoch):
|
||||
current_fake_data = log(Gl7)
|
||||
|
||||
fig = plot(current_fake_data)
|
||||
fig.savefig('Click_Me_{}.png'.format(str(iter).zfill(3)+"_Ginput_"+str(G_input)+ \
|
||||
"_hiddenone"+str(hidden_input) + "_hiddentwo"+str(hidden_input2) + "_LR_" + str(learing_rate)
|
||||
), bbox_inches='tight')
|
||||
#for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
|
||||
fig.savefig(
|
||||
"Click_Me_{}.png".format(
|
||||
str(iter).zfill(3)
|
||||
+ "_Ginput_"
|
||||
+ str(G_input)
|
||||
+ "_hiddenone"
|
||||
+ str(hidden_input)
|
||||
+ "_hiddentwo"
|
||||
+ str(hidden_input2)
|
||||
+ "_LR_"
|
||||
+ str(learing_rate)
|
||||
),
|
||||
bbox_inches="tight",
|
||||
)
|
||||
# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
|
||||
# -- end code --
|
||||
|
@ -34,20 +34,20 @@ from tensorflow.python.framework import random_seed
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.util.deprecation import deprecated
|
||||
|
||||
_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
|
||||
_Datasets = collections.namedtuple("_Datasets", ["train", "validation", "test"])
|
||||
|
||||
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
|
||||
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
|
||||
DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
||||
|
||||
|
||||
def _read32(bytestream):
|
||||
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
|
||||
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
|
||||
dt = numpy.dtype(numpy.uint32).newbyteorder(">")
|
||||
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
|
||||
|
||||
|
||||
@deprecated(None, 'Please use tf.data to implement this functionality.')
|
||||
@deprecated(None, "Please use tf.data to implement this functionality.")
|
||||
def _extract_images(f):
|
||||
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
|
||||
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
|
||||
|
||||
Args:
|
||||
f: A file object that can be passed into a gzip reader.
|
||||
@ -59,34 +59,35 @@ def _extract_images(f):
|
||||
ValueError: If the bytestream does not start with 2051.
|
||||
|
||||
"""
|
||||
print('Extracting', f.name)
|
||||
with gzip.GzipFile(fileobj=f) as bytestream:
|
||||
magic = _read32(bytestream)
|
||||
if magic != 2051:
|
||||
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
|
||||
(magic, f.name))
|
||||
num_images = _read32(bytestream)
|
||||
rows = _read32(bytestream)
|
||||
cols = _read32(bytestream)
|
||||
buf = bytestream.read(rows * cols * num_images)
|
||||
data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||
data = data.reshape(num_images, rows, cols, 1)
|
||||
return data
|
||||
print("Extracting", f.name)
|
||||
with gzip.GzipFile(fileobj=f) as bytestream:
|
||||
magic = _read32(bytestream)
|
||||
if magic != 2051:
|
||||
raise ValueError(
|
||||
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name)
|
||||
)
|
||||
num_images = _read32(bytestream)
|
||||
rows = _read32(bytestream)
|
||||
cols = _read32(bytestream)
|
||||
buf = bytestream.read(rows * cols * num_images)
|
||||
data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||
data = data.reshape(num_images, rows, cols, 1)
|
||||
return data
|
||||
|
||||
|
||||
@deprecated(None, 'Please use tf.one_hot on tensors.')
|
||||
@deprecated(None, "Please use tf.one_hot on tensors.")
|
||||
def _dense_to_one_hot(labels_dense, num_classes):
|
||||
"""Convert class labels from scalars to one-hot vectors."""
|
||||
num_labels = labels_dense.shape[0]
|
||||
index_offset = numpy.arange(num_labels) * num_classes
|
||||
labels_one_hot = numpy.zeros((num_labels, num_classes))
|
||||
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
||||
return labels_one_hot
|
||||
"""Convert class labels from scalars to one-hot vectors."""
|
||||
num_labels = labels_dense.shape[0]
|
||||
index_offset = numpy.arange(num_labels) * num_classes
|
||||
labels_one_hot = numpy.zeros((num_labels, num_classes))
|
||||
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
||||
return labels_one_hot
|
||||
|
||||
|
||||
@deprecated(None, 'Please use tf.data to implement this functionality.')
|
||||
@deprecated(None, "Please use tf.data to implement this functionality.")
|
||||
def _extract_labels(f, one_hot=False, num_classes=10):
|
||||
"""Extract the labels into a 1D uint8 numpy array [index].
|
||||
"""Extract the labels into a 1D uint8 numpy array [index].
|
||||
|
||||
Args:
|
||||
f: A file object that can be passed into a gzip reader.
|
||||
@ -99,37 +100,43 @@ def _extract_labels(f, one_hot=False, num_classes=10):
|
||||
Raises:
|
||||
ValueError: If the bystream doesn't start with 2049.
|
||||
"""
|
||||
print('Extracting', f.name)
|
||||
with gzip.GzipFile(fileobj=f) as bytestream:
|
||||
magic = _read32(bytestream)
|
||||
if magic != 2049:
|
||||
raise ValueError('Invalid magic number %d in MNIST label file: %s' %
|
||||
(magic, f.name))
|
||||
num_items = _read32(bytestream)
|
||||
buf = bytestream.read(num_items)
|
||||
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||
if one_hot:
|
||||
return _dense_to_one_hot(labels, num_classes)
|
||||
return labels
|
||||
print("Extracting", f.name)
|
||||
with gzip.GzipFile(fileobj=f) as bytestream:
|
||||
magic = _read32(bytestream)
|
||||
if magic != 2049:
|
||||
raise ValueError(
|
||||
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name)
|
||||
)
|
||||
num_items = _read32(bytestream)
|
||||
buf = bytestream.read(num_items)
|
||||
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||
if one_hot:
|
||||
return _dense_to_one_hot(labels, num_classes)
|
||||
return labels
|
||||
|
||||
|
||||
class _DataSet(object):
|
||||
"""Container class for a _DataSet (deprecated).
|
||||
"""Container class for a _DataSet (deprecated).
|
||||
|
||||
THIS CLASS IS DEPRECATED.
|
||||
"""
|
||||
|
||||
@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py'
|
||||
' from tensorflow/models.')
|
||||
def __init__(self,
|
||||
images,
|
||||
labels,
|
||||
fake_data=False,
|
||||
one_hot=False,
|
||||
dtype=dtypes.float32,
|
||||
reshape=True,
|
||||
seed=None):
|
||||
"""Construct a _DataSet.
|
||||
@deprecated(
|
||||
None,
|
||||
"Please use alternatives such as official/mnist/_DataSet.py"
|
||||
" from tensorflow/models.",
|
||||
)
|
||||
def __init__(
|
||||
self,
|
||||
images,
|
||||
labels,
|
||||
fake_data=False,
|
||||
one_hot=False,
|
||||
dtype=dtypes.float32,
|
||||
reshape=True,
|
||||
seed=None,
|
||||
):
|
||||
"""Construct a _DataSet.
|
||||
|
||||
one_hot arg is used only if fake_data is true. `dtype` can be either
|
||||
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
|
||||
@ -146,101 +153,105 @@ class _DataSet(object):
|
||||
reshape: Bool. If True returned images are returned flattened to vectors.
|
||||
seed: The random seed to use.
|
||||
"""
|
||||
seed1, seed2 = random_seed.get_seed(seed)
|
||||
# If op level seed is not set, use whatever graph level seed is returned
|
||||
numpy.random.seed(seed1 if seed is None else seed2)
|
||||
dtype = dtypes.as_dtype(dtype).base_dtype
|
||||
if dtype not in (dtypes.uint8, dtypes.float32):
|
||||
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
|
||||
dtype)
|
||||
if fake_data:
|
||||
self._num_examples = 10000
|
||||
self.one_hot = one_hot
|
||||
else:
|
||||
assert images.shape[0] == labels.shape[0], (
|
||||
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
|
||||
self._num_examples = images.shape[0]
|
||||
seed1, seed2 = random_seed.get_seed(seed)
|
||||
# If op level seed is not set, use whatever graph level seed is returned
|
||||
numpy.random.seed(seed1 if seed is None else seed2)
|
||||
dtype = dtypes.as_dtype(dtype).base_dtype
|
||||
if dtype not in (dtypes.uint8, dtypes.float32):
|
||||
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype)
|
||||
if fake_data:
|
||||
self._num_examples = 10000
|
||||
self.one_hot = one_hot
|
||||
else:
|
||||
assert (
|
||||
images.shape[0] == labels.shape[0]
|
||||
), "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)
|
||||
self._num_examples = images.shape[0]
|
||||
|
||||
# Convert shape from [num examples, rows, columns, depth]
|
||||
# to [num examples, rows*columns] (assuming depth == 1)
|
||||
if reshape:
|
||||
assert images.shape[3] == 1
|
||||
images = images.reshape(images.shape[0],
|
||||
images.shape[1] * images.shape[2])
|
||||
if dtype == dtypes.float32:
|
||||
# Convert from [0, 255] -> [0.0, 1.0].
|
||||
images = images.astype(numpy.float32)
|
||||
images = numpy.multiply(images, 1.0 / 255.0)
|
||||
self._images = images
|
||||
self._labels = labels
|
||||
self._epochs_completed = 0
|
||||
self._index_in_epoch = 0
|
||||
# Convert shape from [num examples, rows, columns, depth]
|
||||
# to [num examples, rows*columns] (assuming depth == 1)
|
||||
if reshape:
|
||||
assert images.shape[3] == 1
|
||||
images = images.reshape(
|
||||
images.shape[0], images.shape[1] * images.shape[2]
|
||||
)
|
||||
if dtype == dtypes.float32:
|
||||
# Convert from [0, 255] -> [0.0, 1.0].
|
||||
images = images.astype(numpy.float32)
|
||||
images = numpy.multiply(images, 1.0 / 255.0)
|
||||
self._images = images
|
||||
self._labels = labels
|
||||
self._epochs_completed = 0
|
||||
self._index_in_epoch = 0
|
||||
|
||||
@property
|
||||
def images(self):
|
||||
return self._images
|
||||
@property
|
||||
def images(self):
|
||||
return self._images
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
return self._labels
|
||||
@property
|
||||
def labels(self):
|
||||
return self._labels
|
||||
|
||||
@property
|
||||
def num_examples(self):
|
||||
return self._num_examples
|
||||
@property
|
||||
def num_examples(self):
|
||||
return self._num_examples
|
||||
|
||||
@property
|
||||
def epochs_completed(self):
|
||||
return self._epochs_completed
|
||||
@property
|
||||
def epochs_completed(self):
|
||||
return self._epochs_completed
|
||||
|
||||
def next_batch(self, batch_size, fake_data=False, shuffle=True):
|
||||
"""Return the next `batch_size` examples from this data set."""
|
||||
if fake_data:
|
||||
fake_image = [1] * 784
|
||||
if self.one_hot:
|
||||
fake_label = [1] + [0] * 9
|
||||
else:
|
||||
fake_label = 0
|
||||
return [fake_image for _ in xrange(batch_size)
|
||||
], [fake_label for _ in xrange(batch_size)]
|
||||
start = self._index_in_epoch
|
||||
# Shuffle for the first epoch
|
||||
if self._epochs_completed == 0 and start == 0 and shuffle:
|
||||
perm0 = numpy.arange(self._num_examples)
|
||||
numpy.random.shuffle(perm0)
|
||||
self._images = self.images[perm0]
|
||||
self._labels = self.labels[perm0]
|
||||
# Go to the next epoch
|
||||
if start + batch_size > self._num_examples:
|
||||
# Finished epoch
|
||||
self._epochs_completed += 1
|
||||
# Get the rest examples in this epoch
|
||||
rest_num_examples = self._num_examples - start
|
||||
images_rest_part = self._images[start:self._num_examples]
|
||||
labels_rest_part = self._labels[start:self._num_examples]
|
||||
# Shuffle the data
|
||||
if shuffle:
|
||||
perm = numpy.arange(self._num_examples)
|
||||
numpy.random.shuffle(perm)
|
||||
self._images = self.images[perm]
|
||||
self._labels = self.labels[perm]
|
||||
# Start next epoch
|
||||
start = 0
|
||||
self._index_in_epoch = batch_size - rest_num_examples
|
||||
end = self._index_in_epoch
|
||||
images_new_part = self._images[start:end]
|
||||
labels_new_part = self._labels[start:end]
|
||||
return numpy.concatenate((images_rest_part, images_new_part),
|
||||
axis=0), numpy.concatenate(
|
||||
(labels_rest_part, labels_new_part), axis=0)
|
||||
else:
|
||||
self._index_in_epoch += batch_size
|
||||
end = self._index_in_epoch
|
||||
return self._images[start:end], self._labels[start:end]
|
||||
def next_batch(self, batch_size, fake_data=False, shuffle=True):
|
||||
"""Return the next `batch_size` examples from this data set."""
|
||||
if fake_data:
|
||||
fake_image = [1] * 784
|
||||
if self.one_hot:
|
||||
fake_label = [1] + [0] * 9
|
||||
else:
|
||||
fake_label = 0
|
||||
return (
|
||||
[fake_image for _ in xrange(batch_size)],
|
||||
[fake_label for _ in xrange(batch_size)],
|
||||
)
|
||||
start = self._index_in_epoch
|
||||
# Shuffle for the first epoch
|
||||
if self._epochs_completed == 0 and start == 0 and shuffle:
|
||||
perm0 = numpy.arange(self._num_examples)
|
||||
numpy.random.shuffle(perm0)
|
||||
self._images = self.images[perm0]
|
||||
self._labels = self.labels[perm0]
|
||||
# Go to the next epoch
|
||||
if start + batch_size > self._num_examples:
|
||||
# Finished epoch
|
||||
self._epochs_completed += 1
|
||||
# Get the rest examples in this epoch
|
||||
rest_num_examples = self._num_examples - start
|
||||
images_rest_part = self._images[start : self._num_examples]
|
||||
labels_rest_part = self._labels[start : self._num_examples]
|
||||
# Shuffle the data
|
||||
if shuffle:
|
||||
perm = numpy.arange(self._num_examples)
|
||||
numpy.random.shuffle(perm)
|
||||
self._images = self.images[perm]
|
||||
self._labels = self.labels[perm]
|
||||
# Start next epoch
|
||||
start = 0
|
||||
self._index_in_epoch = batch_size - rest_num_examples
|
||||
end = self._index_in_epoch
|
||||
images_new_part = self._images[start:end]
|
||||
labels_new_part = self._labels[start:end]
|
||||
return (
|
||||
numpy.concatenate((images_rest_part, images_new_part), axis=0),
|
||||
numpy.concatenate((labels_rest_part, labels_new_part), axis=0),
|
||||
)
|
||||
else:
|
||||
self._index_in_epoch += batch_size
|
||||
end = self._index_in_epoch
|
||||
return self._images[start:end], self._labels[start:end]
|
||||
|
||||
|
||||
@deprecated(None, 'Please write your own downloading logic.')
|
||||
@deprecated(None, "Please write your own downloading logic.")
|
||||
def _maybe_download(filename, work_directory, source_url):
|
||||
"""Download the data from source url, unless it's already here.
|
||||
"""Download the data from source url, unless it's already here.
|
||||
|
||||
Args:
|
||||
filename: string, name of the file in the directory.
|
||||
@ -250,83 +261,90 @@ def _maybe_download(filename, work_directory, source_url):
|
||||
Returns:
|
||||
Path to resulting file.
|
||||
"""
|
||||
if not gfile.Exists(work_directory):
|
||||
gfile.MakeDirs(work_directory)
|
||||
filepath = os.path.join(work_directory, filename)
|
||||
if not gfile.Exists(filepath):
|
||||
urllib.request.urlretrieve(source_url, filepath)
|
||||
with gfile.GFile(filepath) as f:
|
||||
size = f.size()
|
||||
print('Successfully downloaded', filename, size, 'bytes.')
|
||||
return filepath
|
||||
if not gfile.Exists(work_directory):
|
||||
gfile.MakeDirs(work_directory)
|
||||
filepath = os.path.join(work_directory, filename)
|
||||
if not gfile.Exists(filepath):
|
||||
urllib.request.urlretrieve(source_url, filepath)
|
||||
with gfile.GFile(filepath) as f:
|
||||
size = f.size()
|
||||
print("Successfully downloaded", filename, size, "bytes.")
|
||||
return filepath
|
||||
|
||||
|
||||
@deprecated(None, 'Please use alternatives such as:'
|
||||
' tensorflow_datasets.load(\'mnist\')')
|
||||
def read_data_sets(train_dir,
|
||||
fake_data=False,
|
||||
one_hot=False,
|
||||
dtype=dtypes.float32,
|
||||
reshape=True,
|
||||
validation_size=5000,
|
||||
seed=None,
|
||||
source_url=DEFAULT_SOURCE_URL):
|
||||
if fake_data:
|
||||
@deprecated(
|
||||
None, "Please use alternatives such as:" " tensorflow_datasets.load('mnist')"
|
||||
)
|
||||
def read_data_sets(
|
||||
train_dir,
|
||||
fake_data=False,
|
||||
one_hot=False,
|
||||
dtype=dtypes.float32,
|
||||
reshape=True,
|
||||
validation_size=5000,
|
||||
seed=None,
|
||||
source_url=DEFAULT_SOURCE_URL,
|
||||
):
|
||||
if fake_data:
|
||||
|
||||
def fake():
|
||||
return _DataSet([], [],
|
||||
fake_data=True,
|
||||
one_hot=one_hot,
|
||||
dtype=dtype,
|
||||
seed=seed)
|
||||
def fake():
|
||||
return _DataSet(
|
||||
[], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed
|
||||
)
|
||||
|
||||
train = fake()
|
||||
validation = fake()
|
||||
test = fake()
|
||||
return _Datasets(train=train, validation=validation, test=test)
|
||||
|
||||
if not source_url: # empty string check
|
||||
source_url = DEFAULT_SOURCE_URL
|
||||
|
||||
train_images_file = "train-images-idx3-ubyte.gz"
|
||||
train_labels_file = "train-labels-idx1-ubyte.gz"
|
||||
test_images_file = "t10k-images-idx3-ubyte.gz"
|
||||
test_labels_file = "t10k-labels-idx1-ubyte.gz"
|
||||
|
||||
local_file = _maybe_download(
|
||||
train_images_file, train_dir, source_url + train_images_file
|
||||
)
|
||||
with gfile.Open(local_file, "rb") as f:
|
||||
train_images = _extract_images(f)
|
||||
|
||||
local_file = _maybe_download(
|
||||
train_labels_file, train_dir, source_url + train_labels_file
|
||||
)
|
||||
with gfile.Open(local_file, "rb") as f:
|
||||
train_labels = _extract_labels(f, one_hot=one_hot)
|
||||
|
||||
local_file = _maybe_download(
|
||||
test_images_file, train_dir, source_url + test_images_file
|
||||
)
|
||||
with gfile.Open(local_file, "rb") as f:
|
||||
test_images = _extract_images(f)
|
||||
|
||||
local_file = _maybe_download(
|
||||
test_labels_file, train_dir, source_url + test_labels_file
|
||||
)
|
||||
with gfile.Open(local_file, "rb") as f:
|
||||
test_labels = _extract_labels(f, one_hot=one_hot)
|
||||
|
||||
if not 0 <= validation_size <= len(train_images):
|
||||
raise ValueError(
|
||||
"Validation size should be between 0 and {}. Received: {}.".format(
|
||||
len(train_images), validation_size
|
||||
)
|
||||
)
|
||||
|
||||
validation_images = train_images[:validation_size]
|
||||
validation_labels = train_labels[:validation_size]
|
||||
train_images = train_images[validation_size:]
|
||||
train_labels = train_labels[validation_size:]
|
||||
|
||||
options = dict(dtype=dtype, reshape=reshape, seed=seed)
|
||||
|
||||
train = _DataSet(train_images, train_labels, **options)
|
||||
validation = _DataSet(validation_images, validation_labels, **options)
|
||||
test = _DataSet(test_images, test_labels, **options)
|
||||
|
||||
train = fake()
|
||||
validation = fake()
|
||||
test = fake()
|
||||
return _Datasets(train=train, validation=validation, test=test)
|
||||
|
||||
if not source_url: # empty string check
|
||||
source_url = DEFAULT_SOURCE_URL
|
||||
|
||||
train_images_file = 'train-images-idx3-ubyte.gz'
|
||||
train_labels_file = 'train-labels-idx1-ubyte.gz'
|
||||
test_images_file = 't10k-images-idx3-ubyte.gz'
|
||||
test_labels_file = 't10k-labels-idx1-ubyte.gz'
|
||||
|
||||
local_file = _maybe_download(train_images_file, train_dir,
|
||||
source_url + train_images_file)
|
||||
with gfile.Open(local_file, 'rb') as f:
|
||||
train_images = _extract_images(f)
|
||||
|
||||
local_file = _maybe_download(train_labels_file, train_dir,
|
||||
source_url + train_labels_file)
|
||||
with gfile.Open(local_file, 'rb') as f:
|
||||
train_labels = _extract_labels(f, one_hot=one_hot)
|
||||
|
||||
local_file = _maybe_download(test_images_file, train_dir,
|
||||
source_url + test_images_file)
|
||||
with gfile.Open(local_file, 'rb') as f:
|
||||
test_images = _extract_images(f)
|
||||
|
||||
local_file = _maybe_download(test_labels_file, train_dir,
|
||||
source_url + test_labels_file)
|
||||
with gfile.Open(local_file, 'rb') as f:
|
||||
test_labels = _extract_labels(f, one_hot=one_hot)
|
||||
|
||||
if not 0 <= validation_size <= len(train_images):
|
||||
raise ValueError(
|
||||
'Validation size should be between 0 and {}. Received: {}.'.format(
|
||||
len(train_images), validation_size))
|
||||
|
||||
validation_images = train_images[:validation_size]
|
||||
validation_labels = train_labels[:validation_size]
|
||||
train_images = train_images[validation_size:]
|
||||
train_labels = train_labels[validation_size:]
|
||||
|
||||
options = dict(dtype=dtype, reshape=reshape, seed=seed)
|
||||
|
||||
train = _DataSet(train_images, train_labels, **options)
|
||||
validation = _DataSet(validation_images, validation_labels, **options)
|
||||
test = _DataSet(test_images, test_labels, **options)
|
||||
|
||||
return _Datasets(train=train, validation=validation, test=test)
|
||||
|
@ -2,12 +2,13 @@ from abc import abstractmethod
|
||||
import sys
|
||||
from collections import deque
|
||||
|
||||
|
||||
class LRUCache:
|
||||
""" Page Replacement Algorithm, Least Recently Used (LRU) Caching."""
|
||||
|
||||
dq_store = object() # Cache store of keys
|
||||
key_reference_map = object() # References of the keys in cache
|
||||
_MAX_CAPACITY: int = 10 # Maximum capacity of cache
|
||||
dq_store = object() # Cache store of keys
|
||||
key_reference_map = object() # References of the keys in cache
|
||||
_MAX_CAPACITY: int = 10 # Maximum capacity of cache
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, n: int):
|
||||
@ -19,7 +20,7 @@ class LRUCache:
|
||||
if not n:
|
||||
LRUCache._MAX_CAPACITY = sys.maxsize
|
||||
elif n < 0:
|
||||
raise ValueError('n should be an integer greater than 0.')
|
||||
raise ValueError("n should be an integer greater than 0.")
|
||||
else:
|
||||
LRUCache._MAX_CAPACITY = n
|
||||
|
||||
@ -51,6 +52,7 @@ class LRUCache:
|
||||
for k in self.dq_store:
|
||||
print(k)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
lru_cache = LRUCache(4)
|
||||
lru_cache.refer(1)
|
||||
|
@ -27,7 +27,7 @@ def solution(n):
|
||||
"""
|
||||
fact = 1
|
||||
result = 0
|
||||
for i in range(1,n + 1):
|
||||
for i in range(1, n + 1):
|
||||
fact *= i
|
||||
|
||||
for j in str(fact):
|
||||
|
@ -14,15 +14,13 @@ import os
|
||||
from math import log10
|
||||
|
||||
|
||||
def find_largest(data_file: str="base_exp.txt") -> int:
|
||||
def find_largest(data_file: str = "base_exp.txt") -> int:
|
||||
"""
|
||||
>>> find_largest()
|
||||
709
|
||||
"""
|
||||
largest = [0, 0]
|
||||
for i, line in enumerate(
|
||||
open(os.path.join(os.path.dirname(__file__), data_file))
|
||||
):
|
||||
for i, line in enumerate(open(os.path.join(os.path.dirname(__file__), data_file))):
|
||||
a, x = list(map(int, line.split(",")))
|
||||
if x * log10(a) > largest[0]:
|
||||
largest = [x * log10(a), i + 1]
|
||||
|
@ -3,8 +3,10 @@ import requests
|
||||
|
||||
|
||||
def imdb_top(imdb_top_n):
|
||||
base_url = (f"https://www.imdb.com/search/title?title_type="
|
||||
f"feature&sort=num_votes,desc&count={imdb_top_n}")
|
||||
base_url = (
|
||||
f"https://www.imdb.com/search/title?title_type="
|
||||
f"feature&sort=num_votes,desc&count={imdb_top_n}"
|
||||
)
|
||||
source = BeautifulSoup(requests.get(base_url).content, "html.parser")
|
||||
for m in source.findAll("div", class_="lister-item mode-advanced"):
|
||||
print("\n" + m.h3.a.text) # movie's name
|
||||
|
Loading…
Reference in New Issue
Block a user