This commit is contained in:
SilverDragonOfR 2023-10-10 02:08:40 +05:30
commit 6064787fd5
2 changed files with 163 additions and 2 deletions

View File

@ -54,13 +54,12 @@
* [Largest Pow Of Two Le Num](bit_manipulation/largest_pow_of_two_le_num.py)
* [Missing Number](bit_manipulation/missing_number.py)
* [Numbers Different Signs](bit_manipulation/numbers_different_signs.py)
* [Power Of 4](bit_manipulation/power_of_4.py)
* [Reverse Bits](bit_manipulation/reverse_bits.py)
* [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py)
## Blockchain
* [Chinese Remainder Theorem](blockchain/chinese_remainder_theorem.py)
* [Diophantine Equation](blockchain/diophantine_equation.py)
* [Modular Division](blockchain/modular_division.py)
## Boolean Algebra
* [And Gate](boolean_algebra/and_gate.py)
@ -101,11 +100,13 @@
* [Diffie Hellman](ciphers/diffie_hellman.py)
* [Elgamal Key Generator](ciphers/elgamal_key_generator.py)
* [Enigma Machine2](ciphers/enigma_machine2.py)
* [Fractionated Morse Cipher](ciphers/fractionated_morse_cipher.py)
* [Hill Cipher](ciphers/hill_cipher.py)
* [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py)
* [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py)
* [Morse Code](ciphers/morse_code.py)
* [Onepad Cipher](ciphers/onepad_cipher.py)
* [Permutation Cipher](ciphers/permutation_cipher.py)
* [Playfair Cipher](ciphers/playfair_cipher.py)
* [Polybius](ciphers/polybius.py)
* [Porta Cipher](ciphers/porta_cipher.py)
@ -172,6 +173,7 @@
## Data Structures
* Arrays
* [Equilibrium Index In Array](data_structures/arrays/equilibrium_index_in_array.py)
* [Median Two Array](data_structures/arrays/median_two_array.py)
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
@ -352,6 +354,7 @@
* [Smith Waterman](dynamic_programming/smith_waterman.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Trapped Water](dynamic_programming/trapped_water.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Word Break](dynamic_programming/word_break.py)
@ -360,6 +363,7 @@
* [Apparent Power](electronics/apparent_power.py)
* [Builtin Voltage](electronics/builtin_voltage.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
* [Charging Capacitor](electronics/charging_capacitor.py)
* [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py)
* [Electric Conductivity](electronics/electric_conductivity.py)
@ -466,6 +470,8 @@
* [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py)
## Greedy Methods
* [Best Time To Buy And Sell Stock](greedy_methods/best_time_to_buy_and_sell_stock.py)
* [Fractional Cover Problem](greedy_methods/fractional_cover_problem.py)
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Gas Station](greedy_methods/gas_station.py)
@ -524,6 +530,10 @@
* Local Weighted Learning
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
* [Logistic Regression](machine_learning/logistic_regression.py)
* Loss Functions
* [Binary Cross Entropy](machine_learning/loss_functions/binary_cross_entropy.py)
* [Huber Loss](machine_learning/loss_functions/huber_loss.py)
* [Mean Squared Error](machine_learning/loss_functions/mean_squared_error.py)
* [Mfcc](machine_learning/mfcc.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
@ -565,6 +575,7 @@
* [Catalan Number](maths/catalan_number.py)
* [Ceil](maths/ceil.py)
* [Check Polygon](maths/check_polygon.py)
* [Chinese Remainder Theorem](maths/chinese_remainder_theorem.py)
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
* [Collatz Sequence](maths/collatz_sequence.py)
* [Combinations](maths/combinations.py)
@ -591,6 +602,7 @@
* [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Germain Primes](maths/germain_primes.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Greedy Coin Change](maths/greedy_coin_change.py)
* [Hamming Numbers](maths/hamming_numbers.py)
@ -619,6 +631,7 @@
* [Max Sum Sliding Window](maths/max_sum_sliding_window.py)
* [Median Of Two Arrays](maths/median_of_two_arrays.py)
* [Mobius Function](maths/mobius_function.py)
* [Modular Division](maths/modular_division.py)
* [Modular Exponential](maths/modular_exponential.py)
* [Monte Carlo](maths/monte_carlo.py)
* [Monte Carlo Dice](maths/monte_carlo_dice.py)
@ -720,12 +733,16 @@
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Binary Step](neural_network/activation_functions/binary_step.py)
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Leaky Rectified Linear Unit](neural_network/activation_functions/leaky_rectified_linear_unit.py)
* [Mish](neural_network/activation_functions/mish.py)
* [Rectified Linear Unit](neural_network/activation_functions/rectified_linear_unit.py)
* [Scaled Exponential Linear Unit](neural_network/activation_functions/scaled_exponential_linear_unit.py)
* [Sigmoid Linear Unit](neural_network/activation_functions/sigmoid_linear_unit.py)
* [Soboleva Modified Hyperbolic Tangent](neural_network/activation_functions/soboleva_modified_hyperbolic_tangent.py)
* [Softplus](neural_network/activation_functions/softplus.py)
* [Squareplus](neural_network/activation_functions/squareplus.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Perceptron](neural_network/perceptron.py)
@ -1101,6 +1118,7 @@
* [Interpolation Search](searches/interpolation_search.py)
* [Jump Search](searches/jump_search.py)
* [Linear Search](searches/linear_search.py)
* [Median Of Medians](searches/median_of_medians.py)
* [Quick Select](searches/quick_select.py)
* [Sentinel Linear Search](searches/sentinel_linear_search.py)
* [Simple Binary Search](searches/simple_binary_search.py)
@ -1201,6 +1219,7 @@
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Strip](strings/strip.py)
* [Text Justification](strings/text_justification.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)

View File

@ -0,0 +1,142 @@
"""
The permutation cipher, also called the transposition cipher, is a simple encryption
technique that rearranges the characters in a message based on a secret key. It
divides the message into blocks and applies a permutation to the characters within
each block according to the key. The key is a sequence of unique integers that
determine the order of character rearrangement.
For more info: https://www.nku.edu/~christensen/1402%20permutation%20ciphers.pdf
"""
import random
def generate_valid_block_size(message_length: int) -> int:
"""
Generate a valid block size that is a factor of the message length.
Args:
message_length (int): The length of the message.
Returns:
int: A valid block size.
Example:
>>> random.seed(1)
>>> generate_valid_block_size(12)
3
"""
block_sizes = [
block_size
for block_size in range(2, message_length + 1)
if message_length % block_size == 0
]
return random.choice(block_sizes)
def generate_permutation_key(block_size: int) -> list[int]:
"""
Generate a random permutation key of a specified block size.
Args:
block_size (int): The size of each permutation block.
Returns:
list[int]: A list containing a random permutation of digits.
Example:
>>> random.seed(0)
>>> generate_permutation_key(4)
[2, 0, 1, 3]
"""
digits = list(range(block_size))
random.shuffle(digits)
return digits
def encrypt(
message: str, key: list[int] | None = None, block_size: int | None = None
) -> tuple[str, list[int]]:
"""
Encrypt a message using a permutation cipher with block rearrangement using a key.
Args:
message (str): The plaintext message to be encrypted.
key (list[int]): The permutation key for decryption.
block_size (int): The size of each permutation block.
Returns:
tuple: A tuple containing the encrypted message and the encryption key.
Example:
>>> encrypted_message, key = encrypt("HELLO WORLD")
>>> decrypted_message = decrypt(encrypted_message, key)
>>> decrypted_message
'HELLO WORLD'
"""
message = message.upper()
message_length = len(message)
if key is None or block_size is None:
block_size = generate_valid_block_size(message_length)
key = generate_permutation_key(block_size)
encrypted_message = ""
for i in range(0, message_length, block_size):
block = message[i : i + block_size]
rearranged_block = [block[digit] for digit in key]
encrypted_message += "".join(rearranged_block)
return encrypted_message, key
def decrypt(encrypted_message: str, key: list[int]) -> str:
"""
Decrypt an encrypted message using a permutation cipher with block rearrangement.
Args:
encrypted_message (str): The encrypted message.
key (list[int]): The permutation key for decryption.
Returns:
str: The decrypted plaintext message.
Example:
>>> encrypted_message, key = encrypt("HELLO WORLD")
>>> decrypted_message = decrypt(encrypted_message, key)
>>> decrypted_message
'HELLO WORLD'
"""
key_length = len(key)
decrypted_message = ""
for i in range(0, len(encrypted_message), key_length):
block = encrypted_message[i : i + key_length]
original_block = [""] * key_length
for j, digit in enumerate(key):
original_block[digit] = block[j]
decrypted_message += "".join(original_block)
return decrypted_message
def main() -> None:
"""
Driver function to pass message to get encrypted, then decrypted.
Example:
>>> main()
Decrypted message: HELLO WORLD
"""
message = "HELLO WORLD"
encrypted_message, key = encrypt(message)
decrypted_message = decrypt(encrypted_message, key)
print(f"Decrypted message: {decrypted_message}")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()