From 60f9895685613442e222d0deef0e5a10947a4176 Mon Sep 17 00:00:00 2001 From: Simon Landry Date: Sun, 11 Oct 2020 13:46:16 -0400 Subject: [PATCH] Fixes: #3163 - Add new solution for problem 234 (#3177) * Fixes: #3163 - Add new solution for problem 234 * Apply review suggestions --- project_euler/problem_234/sol1.py | 125 ++++++++++++++++++++++-------- 1 file changed, 94 insertions(+), 31 deletions(-) diff --git a/project_euler/problem_234/sol1.py b/project_euler/problem_234/sol1.py index b65a506d1..7516b164d 100644 --- a/project_euler/problem_234/sol1.py +++ b/project_euler/problem_234/sol1.py @@ -17,40 +17,103 @@ up to 1000 is 34825. What is the sum of all semidivisible numbers not exceeding 999966663333 ? """ - -def fib(a, b, n): - - if n == 1: - return a - elif n == 2: - return b - elif n == 3: - return str(a) + str(b) - - temp = 0 - for x in range(2, n): - c = str(a) + str(b) - temp = b - b = c - a = temp - return c +import math -def solution(n): - """Returns the sum of all semidivisible numbers not exceeding n.""" - semidivisible = [] - for x in range(n): - l = [i for i in input().split()] # noqa: E741 - c2 = 1 - while 1: - if len(fib(l[0], l[1], c2)) < int(l[2]): - c2 += 1 - else: +def prime_sieve(n: int) -> list: + """ + Sieve of Erotosthenes + Function to return all the prime numbers up to a certain number + https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes + >>> prime_sieve(3) + [2] + >>> prime_sieve(50) + [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] + """ + is_prime = [True] * n + is_prime[0] = False + is_prime[1] = False + is_prime[2] = True + + for i in range(3, int(n ** 0.5 + 1), 2): + index = i * 2 + while index < n: + is_prime[index] = False + index = index + i + + primes = [2] + + for i in range(3, n, 2): + if is_prime[i]: + primes.append(i) + + return primes + + +def solution(limit: int = 999_966_663_333) -> int: + """ + Computes the solution to the problem up to the specified limit + >>> solution(1000) + 34825 + + >>> solution(10_000) + 1134942 + + >>> solution(100_000) + 36393008 + """ + primes_upper_bound = math.floor(math.sqrt(limit)) + 100 + primes = prime_sieve(primes_upper_bound) + + matches_sum = 0 + prime_index = 0 + last_prime = primes[prime_index] + + while (last_prime ** 2) <= limit: + next_prime = primes[prime_index + 1] + + lower_bound = last_prime ** 2 + upper_bound = next_prime ** 2 + + # Get numbers divisible by lps(current) + current = lower_bound + last_prime + while upper_bound > current <= limit: + matches_sum += current + current += last_prime + + # Reset the upper_bound + while (upper_bound - next_prime) > limit: + upper_bound -= next_prime + + # Add the numbers divisible by ups(current) + current = upper_bound - next_prime + while current > lower_bound: + matches_sum += current + current -= next_prime + + # Remove the numbers divisible by both ups and lps + current = 0 + while upper_bound > current <= limit: + if current <= lower_bound: + # Increment the current number + current += last_prime * next_prime + continue + + if current > limit: break - semidivisible.append(fib(l[0], l[1], c2 + 1)[int(l[2]) - 1]) - return semidivisible + + # Remove twice since it was added by both ups and lps + matches_sum -= current * 2 + + # Increment the current number + current += last_prime * next_prime + + # Setup for next pair + last_prime = next_prime + prime_index += 1 + + return matches_sum if __name__ == "__main__": - for i in solution(int(str(input()).strip())): - print(i) + print(solution())