From 62dcbea943e8cc4ea4d83eff115c4e6f6a4808af Mon Sep 17 00:00:00 2001 From: duongoku Date: Mon, 26 Jun 2023 14:39:18 +0700 Subject: [PATCH] Add power sum problem (#8832) * Add powersum problem * Add doctest * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add more doctests * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add more doctests * Improve paramater name * Fix line too long * Remove global variables * Apply suggestions from code review * Apply suggestions from code review --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss --- backtracking/power_sum.py | 93 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 backtracking/power_sum.py diff --git a/backtracking/power_sum.py b/backtracking/power_sum.py new file mode 100644 index 000000000..fcf1429f8 --- /dev/null +++ b/backtracking/power_sum.py @@ -0,0 +1,93 @@ +""" +Problem source: https://www.hackerrank.com/challenges/the-power-sum/problem +Find the number of ways that a given integer X, can be expressed as the sum +of the Nth powers of unique, natural numbers. For example, if X=13 and N=2. +We have to find all combinations of unique squares adding up to 13. +The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10. +""" + +from math import pow + + +def backtrack( + needed_sum: int, + power: int, + current_number: int, + current_sum: int, + solutions_count: int, +) -> tuple[int, int]: + """ + >>> backtrack(13, 2, 1, 0, 0) + (0, 1) + >>> backtrack(100, 2, 1, 0, 0) + (0, 3) + >>> backtrack(100, 3, 1, 0, 0) + (0, 1) + >>> backtrack(800, 2, 1, 0, 0) + (0, 561) + >>> backtrack(1000, 10, 1, 0, 0) + (0, 0) + >>> backtrack(400, 2, 1, 0, 0) + (0, 55) + >>> backtrack(50, 1, 1, 0, 0) + (0, 3658) + """ + if current_sum == needed_sum: + # If the sum of the powers is equal to needed_sum, then we have a solution. + solutions_count += 1 + return current_sum, solutions_count + + i_to_n = int(pow(current_number, power)) + if current_sum + i_to_n <= needed_sum: + # If the sum of the powers is less than needed_sum, then continue adding powers. + current_sum += i_to_n + current_sum, solutions_count = backtrack( + needed_sum, power, current_number + 1, current_sum, solutions_count + ) + current_sum -= i_to_n + if i_to_n < needed_sum: + # If the power of i is less than needed_sum, then try with the next power. + current_sum, solutions_count = backtrack( + needed_sum, power, current_number + 1, current_sum, solutions_count + ) + return current_sum, solutions_count + + +def solve(needed_sum: int, power: int) -> int: + """ + >>> solve(13, 2) + 1 + >>> solve(100, 2) + 3 + >>> solve(100, 3) + 1 + >>> solve(800, 2) + 561 + >>> solve(1000, 10) + 0 + >>> solve(400, 2) + 55 + >>> solve(50, 1) + Traceback (most recent call last): + ... + ValueError: Invalid input + needed_sum must be between 1 and 1000, power between 2 and 10. + >>> solve(-10, 5) + Traceback (most recent call last): + ... + ValueError: Invalid input + needed_sum must be between 1 and 1000, power between 2 and 10. + """ + if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): + raise ValueError( + "Invalid input\n" + "needed_sum must be between 1 and 1000, power between 2 and 10." + ) + + return backtrack(needed_sum, power, 1, 0, 0)[1] # Return the solutions_count + + +if __name__ == "__main__": + import doctest + + doctest.testmod()