mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Remove duplicate implementation of Collatz sequence (#8836)
* updating DIRECTORY.md * Remove duplicate implementation of Collatz sequence * updating DIRECTORY.md * Add suggestions from PR review --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
62dcbea943
commit
69f20033e5
@ -522,7 +522,6 @@
|
|||||||
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
|
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
|
||||||
|
|
||||||
## Maths
|
## Maths
|
||||||
* [3N Plus 1](maths/3n_plus_1.py)
|
|
||||||
* [Abs](maths/abs.py)
|
* [Abs](maths/abs.py)
|
||||||
* [Add](maths/add.py)
|
* [Add](maths/add.py)
|
||||||
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
|
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
|
||||||
|
@ -1,151 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
|
|
||||||
def n31(a: int) -> tuple[list[int], int]:
|
|
||||||
"""
|
|
||||||
Returns the Collatz sequence and its length of any positive integer.
|
|
||||||
>>> n31(4)
|
|
||||||
([4, 2, 1], 3)
|
|
||||||
"""
|
|
||||||
|
|
||||||
if not isinstance(a, int):
|
|
||||||
msg = f"Must be int, not {type(a).__name__}"
|
|
||||||
raise TypeError(msg)
|
|
||||||
if a < 1:
|
|
||||||
msg = f"Given integer must be positive, not {a}"
|
|
||||||
raise ValueError(msg)
|
|
||||||
|
|
||||||
path = [a]
|
|
||||||
while a != 1:
|
|
||||||
if a % 2 == 0:
|
|
||||||
a //= 2
|
|
||||||
else:
|
|
||||||
a = 3 * a + 1
|
|
||||||
path.append(a)
|
|
||||||
return path, len(path)
|
|
||||||
|
|
||||||
|
|
||||||
def test_n31():
|
|
||||||
"""
|
|
||||||
>>> test_n31()
|
|
||||||
"""
|
|
||||||
assert n31(4) == ([4, 2, 1], 3)
|
|
||||||
assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15)
|
|
||||||
assert n31(31) == (
|
|
||||||
[
|
|
||||||
31,
|
|
||||||
94,
|
|
||||||
47,
|
|
||||||
142,
|
|
||||||
71,
|
|
||||||
214,
|
|
||||||
107,
|
|
||||||
322,
|
|
||||||
161,
|
|
||||||
484,
|
|
||||||
242,
|
|
||||||
121,
|
|
||||||
364,
|
|
||||||
182,
|
|
||||||
91,
|
|
||||||
274,
|
|
||||||
137,
|
|
||||||
412,
|
|
||||||
206,
|
|
||||||
103,
|
|
||||||
310,
|
|
||||||
155,
|
|
||||||
466,
|
|
||||||
233,
|
|
||||||
700,
|
|
||||||
350,
|
|
||||||
175,
|
|
||||||
526,
|
|
||||||
263,
|
|
||||||
790,
|
|
||||||
395,
|
|
||||||
1186,
|
|
||||||
593,
|
|
||||||
1780,
|
|
||||||
890,
|
|
||||||
445,
|
|
||||||
1336,
|
|
||||||
668,
|
|
||||||
334,
|
|
||||||
167,
|
|
||||||
502,
|
|
||||||
251,
|
|
||||||
754,
|
|
||||||
377,
|
|
||||||
1132,
|
|
||||||
566,
|
|
||||||
283,
|
|
||||||
850,
|
|
||||||
425,
|
|
||||||
1276,
|
|
||||||
638,
|
|
||||||
319,
|
|
||||||
958,
|
|
||||||
479,
|
|
||||||
1438,
|
|
||||||
719,
|
|
||||||
2158,
|
|
||||||
1079,
|
|
||||||
3238,
|
|
||||||
1619,
|
|
||||||
4858,
|
|
||||||
2429,
|
|
||||||
7288,
|
|
||||||
3644,
|
|
||||||
1822,
|
|
||||||
911,
|
|
||||||
2734,
|
|
||||||
1367,
|
|
||||||
4102,
|
|
||||||
2051,
|
|
||||||
6154,
|
|
||||||
3077,
|
|
||||||
9232,
|
|
||||||
4616,
|
|
||||||
2308,
|
|
||||||
1154,
|
|
||||||
577,
|
|
||||||
1732,
|
|
||||||
866,
|
|
||||||
433,
|
|
||||||
1300,
|
|
||||||
650,
|
|
||||||
325,
|
|
||||||
976,
|
|
||||||
488,
|
|
||||||
244,
|
|
||||||
122,
|
|
||||||
61,
|
|
||||||
184,
|
|
||||||
92,
|
|
||||||
46,
|
|
||||||
23,
|
|
||||||
70,
|
|
||||||
35,
|
|
||||||
106,
|
|
||||||
53,
|
|
||||||
160,
|
|
||||||
80,
|
|
||||||
40,
|
|
||||||
20,
|
|
||||||
10,
|
|
||||||
5,
|
|
||||||
16,
|
|
||||||
8,
|
|
||||||
4,
|
|
||||||
2,
|
|
||||||
1,
|
|
||||||
],
|
|
||||||
107,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
num = 4
|
|
||||||
path, length = n31(num)
|
|
||||||
print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}")
|
|
@ -1,43 +1,66 @@
|
|||||||
|
"""
|
||||||
|
The Collatz conjecture is a famous unsolved problem in mathematics. Given a starting
|
||||||
|
positive integer, define the following sequence:
|
||||||
|
- If the current term n is even, then the next term is n/2.
|
||||||
|
- If the current term n is odd, then the next term is 3n + 1.
|
||||||
|
The conjecture claims that this sequence will always reach 1 for any starting number.
|
||||||
|
|
||||||
|
Other names for this problem include the 3n + 1 problem, the Ulam conjecture, Kakutani's
|
||||||
|
problem, the Thwaites conjecture, Hasse's algorithm, the Syracuse problem, and the
|
||||||
|
hailstone sequence.
|
||||||
|
|
||||||
|
Reference: https://en.wikipedia.org/wiki/Collatz_conjecture
|
||||||
|
"""
|
||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from collections.abc import Generator
|
||||||
|
|
||||||
def collatz_sequence(n: int) -> list[int]:
|
|
||||||
|
def collatz_sequence(n: int) -> Generator[int, None, None]:
|
||||||
"""
|
"""
|
||||||
Collatz conjecture: start with any positive integer n. The next term is
|
Generate the Collatz sequence starting at n.
|
||||||
obtained as follows:
|
>>> tuple(collatz_sequence(2.1))
|
||||||
If n term is even, the next term is: n / 2 .
|
|
||||||
If n is odd, the next term is: 3 * n + 1.
|
|
||||||
|
|
||||||
The conjecture states the sequence will always reach 1 for any starting value n.
|
|
||||||
Example:
|
|
||||||
>>> collatz_sequence(2.1)
|
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
Exception: Sequence only defined for natural numbers
|
Exception: Sequence only defined for positive integers
|
||||||
>>> collatz_sequence(0)
|
>>> tuple(collatz_sequence(0))
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
Exception: Sequence only defined for natural numbers
|
Exception: Sequence only defined for positive integers
|
||||||
>>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE
|
>>> tuple(collatz_sequence(4))
|
||||||
[43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7,
|
(4, 2, 1)
|
||||||
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
|
>>> tuple(collatz_sequence(11))
|
||||||
|
(11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)
|
||||||
|
>>> tuple(collatz_sequence(31)) # doctest: +NORMALIZE_WHITESPACE
|
||||||
|
(31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137,
|
||||||
|
412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593,
|
||||||
|
1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425,
|
||||||
|
1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644,
|
||||||
|
1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,
|
||||||
|
866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53,
|
||||||
|
160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1)
|
||||||
|
>>> tuple(collatz_sequence(43)) # doctest: +NORMALIZE_WHITESPACE
|
||||||
|
(43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26,
|
||||||
|
13, 40, 20, 10, 5, 16, 8, 4, 2, 1)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if not isinstance(n, int) or n < 1:
|
if not isinstance(n, int) or n < 1:
|
||||||
raise Exception("Sequence only defined for natural numbers")
|
raise Exception("Sequence only defined for positive integers")
|
||||||
|
|
||||||
sequence = [n]
|
yield n
|
||||||
while n != 1:
|
while n != 1:
|
||||||
n = 3 * n + 1 if n & 1 else n // 2
|
if n % 2 == 0:
|
||||||
sequence.append(n)
|
n //= 2
|
||||||
return sequence
|
else:
|
||||||
|
n = 3 * n + 1
|
||||||
|
yield n
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
n = 43
|
n = 43
|
||||||
sequence = collatz_sequence(n)
|
sequence = tuple(collatz_sequence(n))
|
||||||
print(sequence)
|
print(sequence)
|
||||||
print(f"collatz sequence from {n} took {len(sequence)} steps.")
|
print(f"Collatz sequence from {n} took {len(sequence)} steps.")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
Reference in New Issue
Block a user