Adding function for actual level order traversal (#699)

This commit is contained in:
Vivek 2019-02-16 21:46:43 +05:30 committed by John Law
parent 301493094e
commit 6f283336ae

View File

@ -2,6 +2,7 @@
This is pure python implementation of tree traversal algorithms This is pure python implementation of tree traversal algorithms
""" """
from __future__ import print_function from __future__ import print_function
import queue import queue
try: try:
@ -46,6 +47,7 @@ def build_tree():
node_found.right = right_node node_found.right = right_node
q.put(right_node) q.put(right_node)
def pre_order(node): def pre_order(node):
if not isinstance(node, TreeNode) or not node: if not isinstance(node, TreeNode) or not node:
return return
@ -53,6 +55,7 @@ def pre_order(node):
pre_order(node.left) pre_order(node.left)
pre_order(node.right) pre_order(node.right)
def in_order(node): def in_order(node):
if not isinstance(node, TreeNode) or not node: if not isinstance(node, TreeNode) or not node:
return return
@ -82,22 +85,43 @@ def level_order(node):
if node_dequeued.right: if node_dequeued.right:
q.put(node_dequeued.right) q.put(node_dequeued.right)
#iteration version
def level_order_actual(node):
if not isinstance(node, TreeNode) or not node:
return
q = queue.Queue()
q.put(node)
while not q.empty():
list = []
while not q.empty():
node_dequeued = q.get()
print(node_dequeued.data, end=" ")
if node_dequeued.left:
list.append(node_dequeued.left)
if node_dequeued.right:
list.append(node_dequeued.right)
print()
for node in list:
q.put(node)
# iteration version
def pre_order_iter(node): def pre_order_iter(node):
if not isinstance(node, TreeNode) or not node: if not isinstance(node, TreeNode) or not node:
return return
stack = [] stack = []
n = node n = node
while n or stack: while n or stack:
while n: #start from root node, find its left child while n: # start from root node, find its left child
print(n.data, end=" ") print(n.data, end=" ")
stack.append(n) stack.append(n)
n = n.left n = n.left
#end of while means current node doesn't have left child # end of while means current node doesn't have left child
n = stack.pop() n = stack.pop()
#start to traverse its right child # start to traverse its right child
n = n.right n = n.right
def in_order_iter(node): def in_order_iter(node):
if not isinstance(node, TreeNode) or not node: if not isinstance(node, TreeNode) or not node:
return return
@ -111,22 +135,24 @@ def in_order_iter(node):
print(n.data, end=" ") print(n.data, end=" ")
n = n.right n = n.right
def post_order_iter(node): def post_order_iter(node):
if not isinstance(node, TreeNode) or not node: if not isinstance(node, TreeNode) or not node:
return return
stack1, stack2 = [], [] stack1, stack2 = [], []
n = node n = node
stack1.append(n) stack1.append(n)
while stack1: #to find the reversed order of post order, store it in stack2 while stack1: # to find the reversed order of post order, store it in stack2
n = stack1.pop() n = stack1.pop()
if n.left: if n.left:
stack1.append(n.left) stack1.append(n.left)
if n.right: if n.right:
stack1.append(n.right) stack1.append(n.right)
stack2.append(n) stack2.append(n)
while stack2: #pop up from stack2 will be the post order while stack2: # pop up from stack2 will be the post order
print(stack2.pop().data, end=" ") print(stack2.pop().data, end=" ")
if __name__ == '__main__': if __name__ == '__main__':
print("\n********* Binary Tree Traversals ************\n") print("\n********* Binary Tree Traversals ************\n")
@ -147,6 +173,10 @@ if __name__ == '__main__':
level_order(node) level_order(node)
print("\n******************************************\n") print("\n******************************************\n")
print("\n********* Actual Level Order Traversal ************")
level_order_actual(node)
print("\n******************************************\n")
print("\n********* Pre Order Traversal - Iteration Version ************") print("\n********* Pre Order Traversal - Iteration Version ************")
pre_order_iter(node) pre_order_iter(node)
print("\n******************************************\n") print("\n******************************************\n")