mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Update closest_pair_of_points.py (#1109)
This commit is contained in:
parent
d21b4cfb48
commit
762482dc40
@ -1,55 +1,54 @@
|
|||||||
"""
|
"""
|
||||||
The algorithm finds distance between closest pair of points
|
The algorithm finds distance between closest pair of points
|
||||||
in the given n points.
|
in the given n points.
|
||||||
Approach used -> Divide and conquer
|
Approach used -> Divide and conquer
|
||||||
The points are sorted based on Xco-ords and
|
The points are sorted based on Xco-ords and
|
||||||
then based on Yco-ords separately.
|
then based on Yco-ords separately.
|
||||||
And by applying divide and conquer approach,
|
And by applying divide and conquer approach,
|
||||||
minimum distance is obtained recursively.
|
minimum distance is obtained recursively.
|
||||||
|
|
||||||
>> Closest points can lie on different sides of partition.
|
>> Closest points can lie on different sides of partition.
|
||||||
This case handled by forming a strip of points
|
This case handled by forming a strip of points
|
||||||
whose Xco-ords distance is less than closest_pair_dis
|
whose Xco-ords distance is less than closest_pair_dis
|
||||||
from mid-point's Xco-ords. Points sorted based on Yco-ords
|
from mid-point's Xco-ords. Points sorted based on Yco-ords
|
||||||
are used in this step to reduce sorting time.
|
are used in this step to reduce sorting time.
|
||||||
Closest pair distance is found in the strip of points. (closest_in_strip)
|
Closest pair distance is found in the strip of points. (closest_in_strip)
|
||||||
|
|
||||||
min(closest_pair_dis, closest_in_strip) would be the final answer.
|
min(closest_pair_dis, closest_in_strip) would be the final answer.
|
||||||
|
|
||||||
Time complexity: O(n * log n)
|
|
||||||
"""
|
|
||||||
|
|
||||||
"""
|
Time complexity: O(n * log n)
|
||||||
doctests
|
|
||||||
>>> euclidean_distance_sqr([1,2],[2,4])
|
|
||||||
5
|
|
||||||
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
|
||||||
5
|
|
||||||
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
|
||||||
85
|
|
||||||
>>> points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
|
||||||
>>> print("Distance:", closest_pair_of_points(points, len(points)))
|
|
||||||
"Distance: 1.4142135623730951"
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def euclidean_distance_sqr(point1, point2):
|
def euclidean_distance_sqr(point1, point2):
|
||||||
|
"""
|
||||||
|
>>> euclidean_distance_sqr([1,2],[2,4])
|
||||||
|
5
|
||||||
|
"""
|
||||||
return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
|
return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
|
||||||
|
|
||||||
|
|
||||||
def column_based_sort(array, column = 0):
|
def column_based_sort(array, column = 0):
|
||||||
|
"""
|
||||||
|
>>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1)
|
||||||
|
[(3, 0), (5, 1), (4, 2)]
|
||||||
|
"""
|
||||||
return sorted(array, key = lambda x: x[column])
|
return sorted(array, key = lambda x: x[column])
|
||||||
|
|
||||||
|
|
||||||
def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
||||||
""" brute force approach to find distance between closest pair points
|
"""
|
||||||
|
brute force approach to find distance between closest pair points
|
||||||
|
|
||||||
Parameters :
|
Parameters :
|
||||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||||
|
|
||||||
Returns :
|
Returns :
|
||||||
min_dis (float): distance between closest pair of points
|
min_dis (float): distance between closest pair of points
|
||||||
|
|
||||||
|
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||||
|
5
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
for i in range(points_counts - 1):
|
for i in range(points_counts - 1):
|
||||||
@ -61,14 +60,17 @@ def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
|||||||
|
|
||||||
|
|
||||||
def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
||||||
""" closest pair of points in strip
|
"""
|
||||||
|
closest pair of points in strip
|
||||||
|
|
||||||
Parameters :
|
Parameters :
|
||||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||||
|
|
||||||
Returns :
|
Returns :
|
||||||
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
|
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
|
||||||
|
|
||||||
|
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||||
|
85
|
||||||
"""
|
"""
|
||||||
|
|
||||||
for i in range(min(6, points_counts - 1), points_counts):
|
for i in range(min(6, points_counts - 1), points_counts):
|
||||||
@ -82,29 +84,32 @@ def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
|||||||
def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts):
|
def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts):
|
||||||
""" divide and conquer approach
|
""" divide and conquer approach
|
||||||
|
|
||||||
Parameters :
|
Parameters :
|
||||||
points, points_count (list(tuple(int, int)), int)
|
points, points_count (list(tuple(int, int)), int)
|
||||||
|
|
||||||
Returns :
|
|
||||||
(float): distance btw closest pair of points
|
|
||||||
|
|
||||||
|
Returns :
|
||||||
|
(float): distance btw closest pair of points
|
||||||
|
|
||||||
|
>>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2)
|
||||||
|
8
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# base case
|
# base case
|
||||||
if points_counts <= 3:
|
if points_counts <= 3:
|
||||||
return dis_between_closest_pair(points_sorted_on_x, points_counts)
|
return dis_between_closest_pair(points_sorted_on_x, points_counts)
|
||||||
|
|
||||||
# recursion
|
# recursion
|
||||||
mid = points_counts//2
|
mid = points_counts//2
|
||||||
closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x,
|
closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x,
|
||||||
points_sorted_on_y[:mid],
|
points_sorted_on_y[:mid],
|
||||||
mid)
|
mid)
|
||||||
closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y,
|
closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y,
|
||||||
points_sorted_on_y[mid:],
|
points_sorted_on_y[mid:],
|
||||||
points_counts - mid)
|
points_counts - mid)
|
||||||
closest_pair_dis = min(closest_in_left, closest_in_right)
|
closest_pair_dis = min(closest_in_left, closest_in_right)
|
||||||
|
|
||||||
""" cross_strip contains the points, whose Xcoords are at a
|
"""
|
||||||
|
cross_strip contains the points, whose Xcoords are at a
|
||||||
distance(< closest_pair_dis) from mid's Xcoord
|
distance(< closest_pair_dis) from mid's Xcoord
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -113,21 +118,23 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co
|
|||||||
if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis:
|
if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis:
|
||||||
cross_strip.append(point)
|
cross_strip.append(point)
|
||||||
|
|
||||||
closest_in_strip = dis_between_closest_in_strip(cross_strip,
|
closest_in_strip = dis_between_closest_in_strip(cross_strip,
|
||||||
len(cross_strip), closest_pair_dis)
|
len(cross_strip), closest_pair_dis)
|
||||||
return min(closest_pair_dis, closest_in_strip)
|
return min(closest_pair_dis, closest_in_strip)
|
||||||
|
|
||||||
|
|
||||||
def closest_pair_of_points(points, points_counts):
|
def closest_pair_of_points(points, points_counts):
|
||||||
|
"""
|
||||||
|
>>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)]))
|
||||||
|
28.792360097775937
|
||||||
|
"""
|
||||||
points_sorted_on_x = column_based_sort(points, column = 0)
|
points_sorted_on_x = column_based_sort(points, column = 0)
|
||||||
points_sorted_on_y = column_based_sort(points, column = 1)
|
points_sorted_on_y = column_based_sort(points, column = 1)
|
||||||
return (closest_pair_of_points_sqr(points_sorted_on_x,
|
return (closest_pair_of_points_sqr(points_sorted_on_x,
|
||||||
points_sorted_on_y,
|
points_sorted_on_y,
|
||||||
points_counts)) ** 0.5
|
points_counts)) ** 0.5
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
||||||
print("Distance:", closest_pair_of_points(points, len(points)))
|
print("Distance:", closest_pair_of_points(points, len(points)))
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user