mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Fix readme and duplicate (#967)
* Fix typo * Add all_permutations algorithm to backtracking directory * Update backtracking and D&C algorithms in README Update backtracking and divide_and_conquer algorithms in README * Remove the duplicated file
This commit is contained in:
parent
839160f83a
commit
781b7f86e7
@ -45,6 +45,8 @@ We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us.
|
|||||||
|
|
||||||
- [N Queens](./backtracking/n_queens.py)
|
- [N Queens](./backtracking/n_queens.py)
|
||||||
- [Sum Of Subsets](./backtracking/sum_of_subsets.py)
|
- [Sum Of Subsets](./backtracking/sum_of_subsets.py)
|
||||||
|
- [All Subsequences](./backtracking/all_subsequences.py)
|
||||||
|
- [All Permutations](./backtracking/all_permutations.py)
|
||||||
|
|
||||||
## Ciphers
|
## Ciphers
|
||||||
|
|
||||||
@ -220,7 +222,6 @@ We're on [Gitter](https://gitter.im/TheAlgorithms)! Please join us.
|
|||||||
## Divide And Conquer
|
## Divide And Conquer
|
||||||
|
|
||||||
- [Max Subarray Sum](./divide_and_conquer/max_subarray_sum.py)
|
- [Max Subarray Sum](./divide_and_conquer/max_subarray_sum.py)
|
||||||
- [Max Sub Array Sum](./divide_and_conquer/max_sub_array_sum.py)
|
|
||||||
- [Closest Pair Of Points](./divide_and_conquer/closest_pair_of_points.py)
|
- [Closest Pair Of Points](./divide_and_conquer/closest_pair_of_points.py)
|
||||||
|
|
||||||
## Strings
|
## Strings
|
||||||
|
@ -1,72 +0,0 @@
|
|||||||
"""
|
|
||||||
Given a array of length n, max_sub_array_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method.
|
|
||||||
|
|
||||||
Time complexity : O(n log n)
|
|
||||||
|
|
||||||
Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70)
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
def max_sum_from_start(array):
|
|
||||||
""" This function finds the maximum contiguous sum of array from 0 index
|
|
||||||
|
|
||||||
Parameters :
|
|
||||||
array (list[int]) : given array
|
|
||||||
|
|
||||||
Returns :
|
|
||||||
max_sum (int) : maximum contiguous sum of array from 0 index
|
|
||||||
|
|
||||||
"""
|
|
||||||
array_sum = 0
|
|
||||||
max_sum = float("-inf")
|
|
||||||
for num in array:
|
|
||||||
array_sum += num
|
|
||||||
if array_sum > max_sum:
|
|
||||||
max_sum = array_sum
|
|
||||||
return max_sum
|
|
||||||
|
|
||||||
|
|
||||||
def max_cross_array_sum(array, left, mid, right):
|
|
||||||
""" This function finds the maximum contiguous sum of left and right arrays
|
|
||||||
|
|
||||||
Parameters :
|
|
||||||
array, left, mid, right (list[int], int, int, int)
|
|
||||||
|
|
||||||
Returns :
|
|
||||||
(int) : maximum of sum of contiguous sum of left and right arrays
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1])
|
|
||||||
max_sum_of_right = max_sum_from_start(array[mid+1: right+1])
|
|
||||||
return max_sum_of_left + max_sum_of_right
|
|
||||||
|
|
||||||
|
|
||||||
def max_sub_array_sum(array, left, right):
|
|
||||||
""" This function finds the maximum of sum of contiguous sub-array using divide and conquer method
|
|
||||||
|
|
||||||
Parameters :
|
|
||||||
array, left, right (list[int], int, int) : given array, current left index and current right index
|
|
||||||
|
|
||||||
Returns :
|
|
||||||
int : maximum of sum of contiguous sub-array
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
# base case: array has only one element
|
|
||||||
if left == right:
|
|
||||||
return array[right]
|
|
||||||
|
|
||||||
# Recursion
|
|
||||||
mid = (left + right) // 2
|
|
||||||
left_half_sum = max_sub_array_sum(array, left, mid)
|
|
||||||
right_half_sum = max_sub_array_sum(array, mid + 1, right)
|
|
||||||
cross_sum = max_cross_array_sum(array, left, mid, right)
|
|
||||||
return max(left_half_sum, right_half_sum, cross_sum)
|
|
||||||
|
|
||||||
|
|
||||||
array = [-2, -5, 6, -2, -3, 1, 5, -6]
|
|
||||||
array_length = len(array)
|
|
||||||
print("Maximum sum of contiguous subarray:", max_sub_array_sum(array, 0, array_length - 1))
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user