mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
contribution guidelines checks (#1787)
* spelling corrections * review * improved documentation, removed redundant variables, added testing * added type hint * camel case to snake case * spelling fix * review * python --> Python # it is a brand name, not a snake * explicit cast to int * spaces in int list * "!= None" to "is not None" * Update comb_sort.py * various spelling corrections in documentation & several variables naming conventions fix * + char in file name * import dependency - bug fix Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
parent
2b19e84767
commit
7f04e5cd34
2
.gitignore
vendored
2
.gitignore
vendored
@ -26,7 +26,7 @@ wheels/
|
|||||||
MANIFEST
|
MANIFEST
|
||||||
|
|
||||||
# PyInstaller
|
# PyInstaller
|
||||||
# Usually these files are written by a python script from a template
|
# Usually these files are written by a Python script from a template
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
*.manifest
|
*.manifest
|
||||||
*.spec
|
*.spec
|
||||||
|
@ -263,7 +263,7 @@
|
|||||||
* [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py)
|
* [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py)
|
||||||
|
|
||||||
## Maths
|
## Maths
|
||||||
* [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py)
|
* [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py)
|
||||||
* [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py)
|
* [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py)
|
||||||
* [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py)
|
* [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py)
|
||||||
* [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py)
|
* [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py)
|
||||||
|
@ -42,7 +42,7 @@ def solve(board, row):
|
|||||||
"""
|
"""
|
||||||
It creates a state space tree and calls the safe function until it receives a
|
It creates a state space tree and calls the safe function until it receives a
|
||||||
False Boolean and terminates that branch and backtracks to the next
|
False Boolean and terminates that branch and backtracks to the next
|
||||||
poosible solution branch.
|
possible solution branch.
|
||||||
"""
|
"""
|
||||||
if row >= len(board):
|
if row >= len(board):
|
||||||
"""
|
"""
|
||||||
@ -56,7 +56,7 @@ def solve(board, row):
|
|||||||
return
|
return
|
||||||
for i in range(len(board)):
|
for i in range(len(board)):
|
||||||
"""
|
"""
|
||||||
For every row it iterates through each column to check if it is feesible to place a
|
For every row it iterates through each column to check if it is feasible to place a
|
||||||
queen there.
|
queen there.
|
||||||
If all the combinations for that particular branch are successful the board is
|
If all the combinations for that particular branch are successful the board is
|
||||||
reinitialized for the next possible combination.
|
reinitialized for the next possible combination.
|
||||||
|
@ -65,11 +65,11 @@ class HillCipher:
|
|||||||
encrypt_key is an NxN numpy matrix
|
encrypt_key is an NxN numpy matrix
|
||||||
"""
|
"""
|
||||||
self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key
|
self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key
|
||||||
self.checkDeterminant() # validate the determinant of the encryption key
|
self.check_determinant() # validate the determinant of the encryption key
|
||||||
self.decrypt_key = None
|
self.decrypt_key = None
|
||||||
self.break_key = encrypt_key.shape[0]
|
self.break_key = encrypt_key.shape[0]
|
||||||
|
|
||||||
def checkDeterminant(self):
|
def check_determinant(self):
|
||||||
det = round(numpy.linalg.det(self.encrypt_key))
|
det = round(numpy.linalg.det(self.encrypt_key))
|
||||||
|
|
||||||
if det < 0:
|
if det < 0:
|
||||||
@ -83,7 +83,7 @@ class HillCipher:
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
def processText(self, text):
|
def process_text(self, text):
|
||||||
text = list(text.upper())
|
text = list(text.upper())
|
||||||
text = [char for char in text if char in self.key_string]
|
text = [char for char in text if char in self.key_string]
|
||||||
|
|
||||||
@ -94,7 +94,7 @@ class HillCipher:
|
|||||||
return "".join(text)
|
return "".join(text)
|
||||||
|
|
||||||
def encrypt(self, text):
|
def encrypt(self, text):
|
||||||
text = self.processText(text.upper())
|
text = self.process_text(text.upper())
|
||||||
encrypted = ""
|
encrypted = ""
|
||||||
|
|
||||||
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
||||||
@ -109,7 +109,7 @@ class HillCipher:
|
|||||||
|
|
||||||
return encrypted
|
return encrypted
|
||||||
|
|
||||||
def makeDecryptKey(self):
|
def make_decrypt_key(self):
|
||||||
det = round(numpy.linalg.det(self.encrypt_key))
|
det = round(numpy.linalg.det(self.encrypt_key))
|
||||||
|
|
||||||
if det < 0:
|
if det < 0:
|
||||||
@ -129,8 +129,8 @@ class HillCipher:
|
|||||||
return self.toInt(self.modulus(inv_key))
|
return self.toInt(self.modulus(inv_key))
|
||||||
|
|
||||||
def decrypt(self, text):
|
def decrypt(self, text):
|
||||||
self.decrypt_key = self.makeDecryptKey()
|
self.decrypt_key = self.make_decrypt_key()
|
||||||
text = self.processText(text.upper())
|
text = self.process_text(text.upper())
|
||||||
decrypted = ""
|
decrypted = ""
|
||||||
|
|
||||||
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
||||||
|
@ -3,7 +3,7 @@ import random
|
|||||||
|
|
||||||
class Onepad:
|
class Onepad:
|
||||||
def encrypt(self, text):
|
def encrypt(self, text):
|
||||||
"""Function to encrypt text using psedo-random numbers"""
|
"""Function to encrypt text using pseudo-random numbers"""
|
||||||
plain = [ord(i) for i in text]
|
plain = [ord(i) for i in text]
|
||||||
key = []
|
key = []
|
||||||
cipher = []
|
cipher = []
|
||||||
@ -15,7 +15,7 @@ class Onepad:
|
|||||||
return cipher, key
|
return cipher, key
|
||||||
|
|
||||||
def decrypt(self, cipher, key):
|
def decrypt(self, cipher, key):
|
||||||
"""Function to decrypt text using psedo-random numbers."""
|
"""Function to decrypt text using pseudo-random numbers."""
|
||||||
plain = []
|
plain = []
|
||||||
for i in range(len(key)):
|
for i in range(len(key)):
|
||||||
p = int((cipher[i] - (key[i]) ** 2) / key[i])
|
p = int((cipher[i] - (key[i]) ** 2) / key[i])
|
||||||
|
@ -28,16 +28,16 @@ class BinarySearchTree:
|
|||||||
"""
|
"""
|
||||||
return str(self.root)
|
return str(self.root)
|
||||||
|
|
||||||
def __reassign_nodes(self, node, newChildren):
|
def __reassign_nodes(self, node, new_children):
|
||||||
if newChildren is not None: # reset its kids
|
if new_children is not None: # reset its kids
|
||||||
newChildren.parent = node.parent
|
new_children.parent = node.parent
|
||||||
if node.parent is not None: # reset its parent
|
if node.parent is not None: # reset its parent
|
||||||
if self.is_right(node): # If it is the right children
|
if self.is_right(node): # If it is the right children
|
||||||
node.parent.right = newChildren
|
node.parent.right = new_children
|
||||||
else:
|
else:
|
||||||
node.parent.left = newChildren
|
node.parent.left = new_children
|
||||||
else:
|
else:
|
||||||
self.root = newChildren
|
self.root = new_children
|
||||||
|
|
||||||
def is_right(self, node):
|
def is_right(self, node):
|
||||||
return node == node.parent.right
|
return node == node.parent.right
|
||||||
@ -117,13 +117,13 @@ class BinarySearchTree:
|
|||||||
elif node.right is None: # Has only left children
|
elif node.right is None: # Has only left children
|
||||||
self.__reassign_nodes(node, node.left)
|
self.__reassign_nodes(node, node.left)
|
||||||
else:
|
else:
|
||||||
tmpNode = self.get_max(
|
tmp_node = self.get_max(
|
||||||
node.left
|
node.left
|
||||||
) # Gets the max value of the left branch
|
) # Gets the max value of the left branch
|
||||||
self.remove(tmpNode.value)
|
self.remove(tmp_node.value)
|
||||||
node.value = (
|
node.value = (
|
||||||
tmpNode.value
|
tmp_node.value
|
||||||
) # Assigns the value to the node to delete and keesp tree structure
|
) # Assigns the value to the node to delete and keep tree structure
|
||||||
|
|
||||||
def preorder_traverse(self, node):
|
def preorder_traverse(self, node):
|
||||||
if node is not None:
|
if node is not None:
|
||||||
@ -131,25 +131,25 @@ class BinarySearchTree:
|
|||||||
yield from self.preorder_traverse(node.left)
|
yield from self.preorder_traverse(node.left)
|
||||||
yield from self.preorder_traverse(node.right)
|
yield from self.preorder_traverse(node.right)
|
||||||
|
|
||||||
def traversal_tree(self, traversalFunction=None):
|
def traversal_tree(self, traversal_function=None):
|
||||||
"""
|
"""
|
||||||
This function traversal the tree.
|
This function traversal the tree.
|
||||||
You can pass a function to traversal the tree as needed by client code
|
You can pass a function to traversal the tree as needed by client code
|
||||||
"""
|
"""
|
||||||
if traversalFunction is None:
|
if traversal_function is None:
|
||||||
return self.preorder_traverse(self.root)
|
return self.preorder_traverse(self.root)
|
||||||
else:
|
else:
|
||||||
return traversalFunction(self.root)
|
return traversal_function(self.root)
|
||||||
|
|
||||||
|
|
||||||
def postorder(curr_node):
|
def postorder(curr_node):
|
||||||
"""
|
"""
|
||||||
postOrder (left, right, self)
|
postOrder (left, right, self)
|
||||||
"""
|
"""
|
||||||
nodeList = list()
|
node_list = list()
|
||||||
if curr_node is not None:
|
if curr_node is not None:
|
||||||
nodeList = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
|
node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
|
||||||
return nodeList
|
return node_list
|
||||||
|
|
||||||
|
|
||||||
def binary_search_tree():
|
def binary_search_tree():
|
||||||
|
@ -82,7 +82,7 @@ def binary_tree_count(node_count: int) -> int:
|
|||||||
"""
|
"""
|
||||||
Return the number of possible of binary trees.
|
Return the number of possible of binary trees.
|
||||||
:param n: number of nodes
|
:param n: number of nodes
|
||||||
:return: Number of possilble binary trees
|
:return: Number of possible binary trees
|
||||||
|
|
||||||
>>> binary_tree_count(5)
|
>>> binary_tree_count(5)
|
||||||
5040
|
5040
|
||||||
|
@ -21,7 +21,7 @@ class _DoublyLinkedBase:
|
|||||||
|
|
||||||
def has_next_and_prev(self):
|
def has_next_and_prev(self):
|
||||||
return " Prev -> {0}, Next -> {1}".format(
|
return " Prev -> {0}, Next -> {1}".format(
|
||||||
self._prev != None, self._next != None
|
self._prev is not None, self._next is not None
|
||||||
)
|
)
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
@ -62,7 +62,7 @@ class LinkedList: # making main class named linked list
|
|||||||
|
|
||||||
def display(self): # Prints contents of the list
|
def display(self): # Prints contents of the list
|
||||||
current = self.head
|
current = self.head
|
||||||
while current != None:
|
while current is not None:
|
||||||
current.displayLink()
|
current.displayLink()
|
||||||
current = current.next
|
current = current.next
|
||||||
print()
|
print()
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
"""Queue represented by a python list"""
|
"""Queue represented by a Python list"""
|
||||||
|
|
||||||
|
|
||||||
class Queue:
|
class Queue:
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
Changing contrast with PIL
|
Changing contrast with PIL
|
||||||
|
|
||||||
This algorithm is used in
|
This algorithm is used in
|
||||||
https://noivce.pythonanywhere.com/ python web app.
|
https://noivce.pythonanywhere.com/ Python web app.
|
||||||
|
|
||||||
python/black: True
|
python/black: True
|
||||||
flake8 : True
|
flake8 : True
|
||||||
|
@ -344,19 +344,19 @@ def convex_hull_recursive(points):
|
|||||||
right_most_point = points[n - 1]
|
right_most_point = points[n - 1]
|
||||||
|
|
||||||
convex_set = {left_most_point, right_most_point}
|
convex_set = {left_most_point, right_most_point}
|
||||||
upperhull = []
|
upper_hull = []
|
||||||
lowerhull = []
|
lower_hull = []
|
||||||
|
|
||||||
for i in range(1, n - 1):
|
for i in range(1, n - 1):
|
||||||
det = _det(left_most_point, right_most_point, points[i])
|
det = _det(left_most_point, right_most_point, points[i])
|
||||||
|
|
||||||
if det > 0:
|
if det > 0:
|
||||||
upperhull.append(points[i])
|
upper_hull.append(points[i])
|
||||||
elif det < 0:
|
elif det < 0:
|
||||||
lowerhull.append(points[i])
|
lower_hull.append(points[i])
|
||||||
|
|
||||||
_construct_hull(upperhull, left_most_point, right_most_point, convex_set)
|
_construct_hull(upper_hull, left_most_point, right_most_point, convex_set)
|
||||||
_construct_hull(lowerhull, right_most_point, left_most_point, convex_set)
|
_construct_hull(lower_hull, right_most_point, left_most_point, convex_set)
|
||||||
|
|
||||||
return sorted(convex_set)
|
return sorted(convex_set)
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
This is a python implementation for questions involving task assignments between people.
|
This is a Python implementation for questions involving task assignments between people.
|
||||||
Here Bitmasking and DP are used for solving this.
|
Here Bitmasking and DP are used for solving this.
|
||||||
|
|
||||||
Question :-
|
Question :-
|
||||||
@ -25,41 +25,41 @@ class AssignmentUsingBitmask:
|
|||||||
|
|
||||||
self.task = defaultdict(list) # stores the list of persons for each task
|
self.task = defaultdict(list) # stores the list of persons for each task
|
||||||
|
|
||||||
# finalmask is used to check if all persons are included by setting all bits to 1
|
# final_mask is used to check if all persons are included by setting all bits to 1
|
||||||
self.finalmask = (1 << len(task_performed)) - 1
|
self.final_mask = (1 << len(task_performed)) - 1
|
||||||
|
|
||||||
def CountWaysUtil(self, mask, taskno):
|
def CountWaysUtil(self, mask, task_no):
|
||||||
|
|
||||||
# if mask == self.finalmask all persons are distributed tasks, return 1
|
# if mask == self.finalmask all persons are distributed tasks, return 1
|
||||||
if mask == self.finalmask:
|
if mask == self.final_mask:
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
# if not everyone gets the task and no more tasks are available, return 0
|
# if not everyone gets the task and no more tasks are available, return 0
|
||||||
if taskno > self.total_tasks:
|
if task_no > self.total_tasks:
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
# if case already considered
|
# if case already considered
|
||||||
if self.dp[mask][taskno] != -1:
|
if self.dp[mask][task_no] != -1:
|
||||||
return self.dp[mask][taskno]
|
return self.dp[mask][task_no]
|
||||||
|
|
||||||
# Number of ways when we don't this task in the arrangement
|
# Number of ways when we don't this task in the arrangement
|
||||||
total_ways_util = self.CountWaysUtil(mask, taskno + 1)
|
total_ways_util = self.CountWaysUtil(mask, task_no + 1)
|
||||||
|
|
||||||
# now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks.
|
# now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks.
|
||||||
if taskno in self.task:
|
if task_no in self.task:
|
||||||
for p in self.task[taskno]:
|
for p in self.task[task_no]:
|
||||||
|
|
||||||
# if p is already given a task
|
# if p is already given a task
|
||||||
if mask & (1 << p):
|
if mask & (1 << p):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# assign this task to p and change the mask value. And recursively assign tasks with the new mask value.
|
# assign this task to p and change the mask value. And recursively assign tasks with the new mask value.
|
||||||
total_ways_util += self.CountWaysUtil(mask | (1 << p), taskno + 1)
|
total_ways_util += self.CountWaysUtil(mask | (1 << p), task_no + 1)
|
||||||
|
|
||||||
# save the value.
|
# save the value.
|
||||||
self.dp[mask][taskno] = total_ways_util
|
self.dp[mask][task_no] = total_ways_util
|
||||||
|
|
||||||
return self.dp[mask][taskno]
|
return self.dp[mask][task_no]
|
||||||
|
|
||||||
def countNoOfWays(self, task_performed):
|
def countNoOfWays(self, task_performed):
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ class Fibonacci:
|
|||||||
[0, 1, 1, 2, 3, 5]
|
[0, 1, 1, 2, 3, 5]
|
||||||
[]
|
[]
|
||||||
"""
|
"""
|
||||||
if sequence_no != None:
|
if sequence_no is not None:
|
||||||
if sequence_no < len(self.fib_array):
|
if sequence_no < len(self.fib_array):
|
||||||
return print(self.fib_array[: sequence_no + 1])
|
return print(self.fib_array[: sequence_no + 1])
|
||||||
else:
|
else:
|
||||||
|
@ -11,7 +11,7 @@ import skfuzzy as fuzz
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Create universe of discourse in python using linspace ()
|
# Create universe of discourse in Python using linspace ()
|
||||||
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
|
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
|
||||||
|
|
||||||
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
|
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
|
||||||
|
@ -8,7 +8,7 @@ def printDist(dist, V):
|
|||||||
|
|
||||||
|
|
||||||
def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int:
|
def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int:
|
||||||
r"""
|
"""
|
||||||
Returns shortest paths from a vertex src to all
|
Returns shortest paths from a vertex src to all
|
||||||
other vertices.
|
other vertices.
|
||||||
"""
|
"""
|
||||||
|
@ -3,7 +3,7 @@ import random as rand
|
|||||||
import math as math
|
import math as math
|
||||||
import time
|
import time
|
||||||
|
|
||||||
# the dfault weight is 1 if not assigned but all the implementation is weighted
|
# the default weight is 1 if not assigned but all the implementation is weighted
|
||||||
|
|
||||||
|
|
||||||
class DirectedGraph:
|
class DirectedGraph:
|
||||||
|
@ -6,13 +6,13 @@ def PrimsAlgorithm(l):
|
|||||||
|
|
||||||
nodePosition = []
|
nodePosition = []
|
||||||
|
|
||||||
def getPosition(vertex):
|
def get_position(vertex):
|
||||||
return nodePosition[vertex]
|
return nodePosition[vertex]
|
||||||
|
|
||||||
def setPosition(vertex, pos):
|
def set_position(vertex, pos):
|
||||||
nodePosition[vertex] = pos
|
nodePosition[vertex] = pos
|
||||||
|
|
||||||
def topToBottom(heap, start, size, positions):
|
def top_to_bottom(heap, start, size, positions):
|
||||||
if start > size // 2 - 1:
|
if start > size // 2 - 1:
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
@ -28,14 +28,14 @@ def PrimsAlgorithm(l):
|
|||||||
heap[m], positions[m] = heap[start], positions[start]
|
heap[m], positions[m] = heap[start], positions[start]
|
||||||
heap[start], positions[start] = temp, temp1
|
heap[start], positions[start] = temp, temp1
|
||||||
|
|
||||||
temp = getPosition(positions[m])
|
temp = get_position(positions[m])
|
||||||
setPosition(positions[m], getPosition(positions[start]))
|
set_position(positions[m], get_position(positions[start]))
|
||||||
setPosition(positions[start], temp)
|
set_position(positions[start], temp)
|
||||||
|
|
||||||
topToBottom(heap, m, size, positions)
|
top_to_bottom(heap, m, size, positions)
|
||||||
|
|
||||||
# Update function if value of any node in min-heap decreases
|
# Update function if value of any node in min-heap decreases
|
||||||
def bottomToTop(val, index, heap, position):
|
def bottom_to_top(val, index, heap, position):
|
||||||
temp = position[index]
|
temp = position[index]
|
||||||
|
|
||||||
while index != 0:
|
while index != 0:
|
||||||
@ -47,27 +47,27 @@ def PrimsAlgorithm(l):
|
|||||||
if val < heap[parent]:
|
if val < heap[parent]:
|
||||||
heap[index] = heap[parent]
|
heap[index] = heap[parent]
|
||||||
position[index] = position[parent]
|
position[index] = position[parent]
|
||||||
setPosition(position[parent], index)
|
set_position(position[parent], index)
|
||||||
else:
|
else:
|
||||||
heap[index] = val
|
heap[index] = val
|
||||||
position[index] = temp
|
position[index] = temp
|
||||||
setPosition(temp, index)
|
set_position(temp, index)
|
||||||
break
|
break
|
||||||
index = parent
|
index = parent
|
||||||
else:
|
else:
|
||||||
heap[0] = val
|
heap[0] = val
|
||||||
position[0] = temp
|
position[0] = temp
|
||||||
setPosition(temp, 0)
|
set_position(temp, 0)
|
||||||
|
|
||||||
def heapify(heap, positions):
|
def heapify(heap, positions):
|
||||||
start = len(heap) // 2 - 1
|
start = len(heap) // 2 - 1
|
||||||
for i in range(start, -1, -1):
|
for i in range(start, -1, -1):
|
||||||
topToBottom(heap, i, len(heap), positions)
|
top_to_bottom(heap, i, len(heap), positions)
|
||||||
|
|
||||||
def deleteMinimum(heap, positions):
|
def deleteMinimum(heap, positions):
|
||||||
temp = positions[0]
|
temp = positions[0]
|
||||||
heap[0] = sys.maxsize
|
heap[0] = sys.maxsize
|
||||||
topToBottom(heap, 0, len(heap), positions)
|
top_to_bottom(heap, 0, len(heap), positions)
|
||||||
return temp
|
return temp
|
||||||
|
|
||||||
visited = [0 for i in range(len(l))]
|
visited = [0 for i in range(len(l))]
|
||||||
@ -96,9 +96,9 @@ def PrimsAlgorithm(l):
|
|||||||
TreeEdges.append((Nbr_TV[vertex], vertex))
|
TreeEdges.append((Nbr_TV[vertex], vertex))
|
||||||
visited[vertex] = 1
|
visited[vertex] = 1
|
||||||
for v in l[vertex]:
|
for v in l[vertex]:
|
||||||
if visited[v[0]] == 0 and v[1] < Distance_TV[getPosition(v[0])]:
|
if visited[v[0]] == 0 and v[1] < Distance_TV[get_position(v[0])]:
|
||||||
Distance_TV[getPosition(v[0])] = v[1]
|
Distance_TV[get_position(v[0])] = v[1]
|
||||||
bottomToTop(v[1], getPosition(v[0]), Distance_TV, Positions)
|
bottom_to_top(v[1], get_position(v[0]), Distance_TV, Positions)
|
||||||
Nbr_TV[v[0]] = vertex
|
Nbr_TV[v[0]] = vertex
|
||||||
return TreeEdges
|
return TreeEdges
|
||||||
|
|
||||||
|
@ -52,25 +52,25 @@ class PriorityQueue:
|
|||||||
return (priority, item)
|
return (priority, item)
|
||||||
|
|
||||||
|
|
||||||
def consistent_hueristic(P, goal):
|
def consistent_heuristic(P, goal):
|
||||||
# euclidean distance
|
# euclidean distance
|
||||||
a = np.array(P)
|
a = np.array(P)
|
||||||
b = np.array(goal)
|
b = np.array(goal)
|
||||||
return np.linalg.norm(a - b)
|
return np.linalg.norm(a - b)
|
||||||
|
|
||||||
|
|
||||||
def hueristic_2(P, goal):
|
def heuristic_2(P, goal):
|
||||||
# integer division by time variable
|
# integer division by time variable
|
||||||
return consistent_hueristic(P, goal) // t
|
return consistent_heuristic(P, goal) // t
|
||||||
|
|
||||||
|
|
||||||
def hueristic_1(P, goal):
|
def heuristic_1(P, goal):
|
||||||
# manhattan distance
|
# manhattan distance
|
||||||
return abs(P[0] - goal[0]) + abs(P[1] - goal[1])
|
return abs(P[0] - goal[0]) + abs(P[1] - goal[1])
|
||||||
|
|
||||||
|
|
||||||
def key(start, i, goal, g_function):
|
def key(start, i, goal, g_function):
|
||||||
ans = g_function[start] + W1 * hueristics[i](start, goal)
|
ans = g_function[start] + W1 * heuristics[i](start, goal)
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
@ -134,7 +134,7 @@ def expand_state(
|
|||||||
open_list,
|
open_list,
|
||||||
back_pointer,
|
back_pointer,
|
||||||
):
|
):
|
||||||
for itera in range(n_hueristic):
|
for itera in range(n_heuristic):
|
||||||
open_list[itera].remove_element(s)
|
open_list[itera].remove_element(s)
|
||||||
# print("s", s)
|
# print("s", s)
|
||||||
# print("j", j)
|
# print("j", j)
|
||||||
@ -158,30 +158,24 @@ def expand_state(
|
|||||||
if neighbours not in close_list_anchor:
|
if neighbours not in close_list_anchor:
|
||||||
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
|
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
|
||||||
if neighbours not in close_list_inad:
|
if neighbours not in close_list_inad:
|
||||||
for var in range(1, n_hueristic):
|
for var in range(1, n_heuristic):
|
||||||
if key(neighbours, var, goal, g_function) <= W2 * key(
|
if key(neighbours, var, goal, g_function) <= W2 * key(
|
||||||
neighbours, 0, goal, g_function
|
neighbours, 0, goal, g_function
|
||||||
):
|
):
|
||||||
# print("why not plssssssssss")
|
|
||||||
open_list[j].put(
|
open_list[j].put(
|
||||||
neighbours, key(neighbours, var, goal, g_function)
|
neighbours, key(neighbours, var, goal, g_function)
|
||||||
)
|
)
|
||||||
|
|
||||||
# print
|
|
||||||
|
|
||||||
|
|
||||||
def make_common_ground():
|
def make_common_ground():
|
||||||
some_list = []
|
some_list = []
|
||||||
# block 1
|
|
||||||
for x in range(1, 5):
|
for x in range(1, 5):
|
||||||
for y in range(1, 6):
|
for y in range(1, 6):
|
||||||
some_list.append((x, y))
|
some_list.append((x, y))
|
||||||
|
|
||||||
# line
|
|
||||||
for x in range(15, 20):
|
for x in range(15, 20):
|
||||||
some_list.append((x, 17))
|
some_list.append((x, 17))
|
||||||
|
|
||||||
# block 2 big
|
|
||||||
for x in range(10, 19):
|
for x in range(10, 19):
|
||||||
for y in range(1, 15):
|
for y in range(1, 15):
|
||||||
some_list.append((x, y))
|
some_list.append((x, y))
|
||||||
@ -196,7 +190,7 @@ def make_common_ground():
|
|||||||
return some_list
|
return some_list
|
||||||
|
|
||||||
|
|
||||||
hueristics = {0: consistent_hueristic, 1: hueristic_1, 2: hueristic_2}
|
heuristics = {0: consistent_heuristic, 1: heuristic_1, 2: heuristic_2}
|
||||||
|
|
||||||
blocks_blk = [
|
blocks_blk = [
|
||||||
(0, 1),
|
(0, 1),
|
||||||
@ -229,7 +223,7 @@ blocks = blocks_blk
|
|||||||
W1 = 1
|
W1 = 1
|
||||||
W2 = 1
|
W2 = 1
|
||||||
n = 20
|
n = 20
|
||||||
n_hueristic = 3 # one consistent and two other inconsistent
|
n_heuristic = 3 # one consistent and two other inconsistent
|
||||||
|
|
||||||
# start and end destination
|
# start and end destination
|
||||||
start = (0, 0)
|
start = (0, 0)
|
||||||
@ -238,26 +232,24 @@ goal = (n - 1, n - 1)
|
|||||||
t = 1
|
t = 1
|
||||||
|
|
||||||
|
|
||||||
def multi_a_star(start, goal, n_hueristic):
|
def multi_a_star(start, goal, n_heuristic):
|
||||||
g_function = {start: 0, goal: float("inf")}
|
g_function = {start: 0, goal: float("inf")}
|
||||||
back_pointer = {start: -1, goal: -1}
|
back_pointer = {start: -1, goal: -1}
|
||||||
open_list = []
|
open_list = []
|
||||||
visited = set()
|
visited = set()
|
||||||
|
|
||||||
for i in range(n_hueristic):
|
for i in range(n_heuristic):
|
||||||
open_list.append(PriorityQueue())
|
open_list.append(PriorityQueue())
|
||||||
open_list[i].put(start, key(start, i, goal, g_function))
|
open_list[i].put(start, key(start, i, goal, g_function))
|
||||||
|
|
||||||
close_list_anchor = []
|
close_list_anchor = []
|
||||||
close_list_inad = []
|
close_list_inad = []
|
||||||
while open_list[0].minkey() < float("inf"):
|
while open_list[0].minkey() < float("inf"):
|
||||||
for i in range(1, n_hueristic):
|
for i in range(1, n_heuristic):
|
||||||
# print("i", i)
|
|
||||||
# print(open_list[0].minkey(), open_list[i].minkey())
|
# print(open_list[0].minkey(), open_list[i].minkey())
|
||||||
if open_list[i].minkey() <= W2 * open_list[0].minkey():
|
if open_list[i].minkey() <= W2 * open_list[0].minkey():
|
||||||
global t
|
global t
|
||||||
t += 1
|
t += 1
|
||||||
# print("less prio")
|
|
||||||
if g_function[goal] <= open_list[i].minkey():
|
if g_function[goal] <= open_list[i].minkey():
|
||||||
if g_function[goal] < float("inf"):
|
if g_function[goal] < float("inf"):
|
||||||
do_something(back_pointer, goal, start)
|
do_something(back_pointer, goal, start)
|
||||||
@ -276,12 +268,10 @@ def multi_a_star(start, goal, n_hueristic):
|
|||||||
)
|
)
|
||||||
close_list_inad.append(get_s)
|
close_list_inad.append(get_s)
|
||||||
else:
|
else:
|
||||||
# print("more prio")
|
|
||||||
if g_function[goal] <= open_list[0].minkey():
|
if g_function[goal] <= open_list[0].minkey():
|
||||||
if g_function[goal] < float("inf"):
|
if g_function[goal] < float("inf"):
|
||||||
do_something(back_pointer, goal, start)
|
do_something(back_pointer, goal, start)
|
||||||
else:
|
else:
|
||||||
# print("hoolla")
|
|
||||||
get_s = open_list[0].top_show()
|
get_s = open_list[0].top_show()
|
||||||
visited.add(get_s)
|
visited.add(get_s)
|
||||||
expand_state(
|
expand_state(
|
||||||
@ -319,4 +309,4 @@ def multi_a_star(start, goal, n_hueristic):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
multi_a_star(start, goal, n_hueristic)
|
multi_a_star(start, goal, n_heuristic)
|
||||||
|
@ -121,7 +121,7 @@ def emitterConverter(sizePar, data):
|
|||||||
# counter to control the loop reading
|
# counter to control the loop reading
|
||||||
contLoop = 0
|
contLoop = 0
|
||||||
for x in dataOrd:
|
for x in dataOrd:
|
||||||
if x != None:
|
if x is not None:
|
||||||
try:
|
try:
|
||||||
aux = (binPos[contLoop])[-1 * (bp)]
|
aux = (binPos[contLoop])[-1 * (bp)]
|
||||||
except IndexError:
|
except IndexError:
|
||||||
@ -224,7 +224,7 @@ def receptorConverter(sizePar, data):
|
|||||||
# Counter to control loop reading
|
# Counter to control loop reading
|
||||||
contLoop = 0
|
contLoop = 0
|
||||||
for x in dataOrd:
|
for x in dataOrd:
|
||||||
if x != None:
|
if x is not None:
|
||||||
try:
|
try:
|
||||||
aux = (binPos[contLoop])[-1 * (bp)]
|
aux = (binPos[contLoop])[-1 * (bp)]
|
||||||
except IndexError:
|
except IndexError:
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
"""
|
"""
|
||||||
Linear regression is the most basic type of regression commonly used for
|
Linear regression is the most basic type of regression commonly used for
|
||||||
predictive analysis. The idea is pretty simple, we have a dataset and we have
|
predictive analysis. The idea is pretty simple: we have a dataset and we have
|
||||||
a feature's associated with it. The Features should be choose very cautiously
|
features associated with it. Features should be chosen very cautiously
|
||||||
as they determine, how much our model will be able to make future predictions.
|
as they determine how much our model will be able to make future predictions.
|
||||||
We try to set these Feature weights, over many iterations, so that they best
|
We try to set the weight of these features, over many iterations, so that they best
|
||||||
fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs
|
fit our dataset. In this particular code, I had used a CSGO dataset (ADR vs
|
||||||
Rating). We try to best fit a line through dataset and estimate the parameters.
|
Rating). We try to best fit a line through dataset and estimate the parameters.
|
||||||
"""
|
"""
|
||||||
import requests
|
import requests
|
||||||
|
@ -3,7 +3,7 @@ from typing import Tuple, List
|
|||||||
|
|
||||||
def n31(a: int) -> Tuple[List[int], int]:
|
def n31(a: int) -> Tuple[List[int], int]:
|
||||||
"""
|
"""
|
||||||
Returns the Collatz sequence and its length of any postiver integer.
|
Returns the Collatz sequence and its length of any positive integer.
|
||||||
>>> n31(4)
|
>>> n31(4)
|
||||||
([4, 2, 1], 3)
|
([4, 2, 1], 3)
|
||||||
"""
|
"""
|
@ -14,7 +14,7 @@ def mode(input_list): # Defining function "mode."
|
|||||||
>>> mode(input_list) == statistics.mode(input_list)
|
>>> mode(input_list) == statistics.mode(input_list)
|
||||||
True
|
True
|
||||||
"""
|
"""
|
||||||
# Copying inputlist to check with the index number later.
|
# Copying input_list to check with the index number later.
|
||||||
check_list = input_list.copy()
|
check_list = input_list.copy()
|
||||||
result = list() # Empty list to store the counts of elements in input_list
|
result = list() # Empty list to store the counts of elements in input_list
|
||||||
for x in input_list:
|
for x in input_list:
|
||||||
|
@ -63,7 +63,7 @@ def sum_of_divisors(n: int) -> int:
|
|||||||
|
|
||||||
|
|
||||||
def euler_phi(n: int) -> int:
|
def euler_phi(n: int) -> int:
|
||||||
"""Calculte Euler's Phi Function.
|
"""Calculate Euler's Phi Function.
|
||||||
>>> euler_phi(100)
|
>>> euler_phi(100)
|
||||||
40
|
40
|
||||||
"""
|
"""
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def explicit_euler(ode_func, y0, x0, stepsize, x_end):
|
def explicit_euler(ode_func, y0, x0, step_size, x_end):
|
||||||
"""
|
"""
|
||||||
Calculate numeric solution at each step to an ODE using Euler's Method
|
Calculate numeric solution at each step to an ODE using Euler's Method
|
||||||
|
|
||||||
@ -22,14 +22,14 @@ def explicit_euler(ode_func, y0, x0, stepsize, x_end):
|
|||||||
>>> y[-1]
|
>>> y[-1]
|
||||||
144.77277243257308
|
144.77277243257308
|
||||||
"""
|
"""
|
||||||
N = int(np.ceil((x_end - x0) / stepsize))
|
N = int(np.ceil((x_end - x0) / step_size))
|
||||||
y = np.zeros((N + 1,))
|
y = np.zeros((N + 1,))
|
||||||
y[0] = y0
|
y[0] = y0
|
||||||
x = x0
|
x = x0
|
||||||
|
|
||||||
for k in range(N):
|
for k in range(N):
|
||||||
y[k + 1] = y[k] + stepsize * ode_func(x, y[k])
|
y[k + 1] = y[k] + step_size * ode_func(x, y[k])
|
||||||
x += stepsize
|
x += step_size
|
||||||
|
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
@ -26,5 +26,5 @@ def factorial(n: int) -> int:
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
n = int(input("Enter a positivve integer: ").strip() or 0)
|
n = int(input("Enter a positive integer: ").strip() or 0)
|
||||||
print(f"factorial{n} is {factorial(n)}")
|
print(f"factorial{n} is {factorial(n)}")
|
||||||
|
@ -16,8 +16,8 @@ for word in word_list:
|
|||||||
word_bysig[signature(word)].append(word)
|
word_bysig[signature(word)].append(word)
|
||||||
|
|
||||||
|
|
||||||
def anagram(myword):
|
def anagram(my_word):
|
||||||
return word_bysig[signature(myword)]
|
return word_bysig[signature(my_word)]
|
||||||
|
|
||||||
|
|
||||||
print("finding anagrams...")
|
print("finding anagrams...")
|
||||||
|
@ -26,10 +26,10 @@ class Trie:
|
|||||||
result = []
|
result = []
|
||||||
for c, v in d.items():
|
for c, v in d.items():
|
||||||
if c == END:
|
if c == END:
|
||||||
subresult = [" "]
|
sub_result = [" "]
|
||||||
else:
|
else:
|
||||||
subresult = [c + s for s in self._elements(v)]
|
sub_result = [c + s for s in self._elements(v)]
|
||||||
result.extend(subresult)
|
result.extend(sub_result)
|
||||||
return tuple(result)
|
return tuple(result)
|
||||||
|
|
||||||
|
|
||||||
|
@ -7,12 +7,12 @@ wikipedia/Fischer-Yates-Shuffle.
|
|||||||
import random
|
import random
|
||||||
|
|
||||||
|
|
||||||
def FYshuffle(LIST):
|
def FYshuffle(list):
|
||||||
for i in range(len(LIST)):
|
for i in range(len(list)):
|
||||||
a = random.randint(0, len(LIST) - 1)
|
a = random.randint(0, len(list) - 1)
|
||||||
b = random.randint(0, len(LIST) - 1)
|
b = random.randint(0, len(list) - 1)
|
||||||
LIST[a], LIST[b] = LIST[b], LIST[a]
|
list[a], list[b] = list[b], list[a]
|
||||||
return LIST
|
return list
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
# Python program for generating diamond pattern in python 3.7+
|
# Python program for generating diamond pattern in Python 3.7+
|
||||||
|
|
||||||
# Function to print upper half of diamond (pyramid)
|
# Function to print upper half of diamond (pyramid)
|
||||||
def floyd(n):
|
def floyd(n):
|
||||||
|
@ -3,7 +3,7 @@ Created on Thu Oct 5 16:44:23 2017
|
|||||||
|
|
||||||
@author: Christian Bender
|
@author: Christian Bender
|
||||||
|
|
||||||
This python library contains some useful functions to deal with
|
This Python library contains some useful functions to deal with
|
||||||
prime numbers and whole numbers.
|
prime numbers and whole numbers.
|
||||||
|
|
||||||
Overview:
|
Overview:
|
||||||
|
@ -20,7 +20,7 @@ def solution(n):
|
|||||||
39893
|
39893
|
||||||
"""
|
"""
|
||||||
answer = 0
|
answer = 0
|
||||||
for i in range(999, 99, -1): # 3 digit nimbers range from 999 down to 100
|
for i in range(999, 99, -1): # 3 digit numbers range from 999 down to 100
|
||||||
for j in range(999, 99, -1):
|
for j in range(999, 99, -1):
|
||||||
t = str(i * j)
|
t = str(i * j)
|
||||||
if t == t[::-1] and i * j < n:
|
if t == t[::-1] and i * j < n:
|
||||||
|
@ -8,7 +8,7 @@ We can see that the 6th prime is 13. What is the Nth prime number?
|
|||||||
from math import sqrt
|
from math import sqrt
|
||||||
|
|
||||||
|
|
||||||
def isprime(n):
|
def is_prime(n):
|
||||||
if n == 2:
|
if n == 2:
|
||||||
return True
|
return True
|
||||||
elif n % 2 == 0:
|
elif n % 2 == 0:
|
||||||
@ -41,11 +41,11 @@ def solution(n):
|
|||||||
j = 1
|
j = 1
|
||||||
while i != n and j < 3:
|
while i != n and j < 3:
|
||||||
j += 1
|
j += 1
|
||||||
if isprime(j):
|
if is_prime(j):
|
||||||
i += 1
|
i += 1
|
||||||
while i != n:
|
while i != n:
|
||||||
j += 2
|
j += 2
|
||||||
if isprime(j):
|
if is_prime(j):
|
||||||
i += 1
|
i += 1
|
||||||
return j
|
return j
|
||||||
|
|
||||||
|
@ -52,10 +52,10 @@ def next_term(a_i, k, i, n):
|
|||||||
|
|
||||||
sub_memo = memo.get(ds_b)
|
sub_memo = memo.get(ds_b)
|
||||||
|
|
||||||
if sub_memo != None:
|
if sub_memo is not None:
|
||||||
jumps = sub_memo.get(c)
|
jumps = sub_memo.get(c)
|
||||||
|
|
||||||
if jumps != None and len(jumps) > 0:
|
if jumps is not None and len(jumps) > 0:
|
||||||
# find and make the largest jump without going over
|
# find and make the largest jump without going over
|
||||||
max_jump = -1
|
max_jump = -1
|
||||||
for _k in range(len(jumps) - 1, -1, -1):
|
for _k in range(len(jumps) - 1, -1, -1):
|
||||||
|
@ -6,14 +6,14 @@ from typing import Iterator
|
|||||||
URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master"
|
URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master"
|
||||||
|
|
||||||
|
|
||||||
def good_filepaths(top_dir: str = ".") -> Iterator[str]:
|
def good_file_paths(top_dir: str = ".") -> Iterator[str]:
|
||||||
for dirpath, dirnames, filenames in os.walk(top_dir):
|
for dir_path, dir_names, filenames in os.walk(top_dir):
|
||||||
dirnames[:] = [d for d in dirnames if d != "scripts" and d[0] not in "._"]
|
dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"]
|
||||||
for filename in filenames:
|
for filename in filenames:
|
||||||
if filename == "__init__.py":
|
if filename == "__init__.py":
|
||||||
continue
|
continue
|
||||||
if os.path.splitext(filename)[1] in (".py", ".ipynb"):
|
if os.path.splitext(filename)[1] in (".py", ".ipynb"):
|
||||||
yield os.path.join(dirpath, filename).lstrip("./")
|
yield os.path.join(dir_path, filename).lstrip("./")
|
||||||
|
|
||||||
|
|
||||||
def md_prefix(i):
|
def md_prefix(i):
|
||||||
@ -31,7 +31,7 @@ def print_path(old_path: str, new_path: str) -> str:
|
|||||||
|
|
||||||
def print_directory_md(top_dir: str = ".") -> None:
|
def print_directory_md(top_dir: str = ".") -> None:
|
||||||
old_path = ""
|
old_path = ""
|
||||||
for filepath in sorted(good_filepaths()):
|
for filepath in sorted(good_file_paths()):
|
||||||
filepath, filename = os.path.split(filepath)
|
filepath, filename = os.path.split(filepath)
|
||||||
if filepath != old_path:
|
if filepath != old_path:
|
||||||
old_path = print_path(old_path, filepath)
|
old_path = print_path(old_path, filepath)
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from build_directory_md import good_filepaths
|
from build_directory_md import good_file_paths
|
||||||
|
|
||||||
filepaths = list(good_filepaths())
|
filepaths = list(good_file_paths())
|
||||||
assert filepaths, "good_filepaths() failed!"
|
assert filepaths, "good_file_paths() failed!"
|
||||||
|
|
||||||
|
|
||||||
upper_files = [file for file in filepaths if file != file.lower()]
|
upper_files = [file for file in filepaths if file != file.lower()]
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of binary search algorithms
|
This is pure Python implementation of binary search algorithms
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v binary_search.py
|
python -m doctest -v binary_search.py
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of interpolation search algorithm
|
This is pure Python implementation of interpolation search algorithm
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of linear search algorithm
|
This is pure Python implementation of linear search algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v linear_search.py
|
python -m doctest -v linear_search.py
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of sentinel linear search algorithm
|
This is pure Python implementation of sentinel linear search algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v sentinel_linear_search.py
|
python -m doctest -v sentinel_linear_search.py
|
||||||
|
@ -66,15 +66,15 @@ def simulated_annealing(
|
|||||||
if change > 0: # improves the solution
|
if change > 0: # improves the solution
|
||||||
next_state = picked_neighbor
|
next_state = picked_neighbor
|
||||||
else:
|
else:
|
||||||
probabililty = (math.e) ** (
|
probability = (math.e) ** (
|
||||||
change / current_temp
|
change / current_temp
|
||||||
) # probability generation function
|
) # probability generation function
|
||||||
if random.random() < probabililty: # random number within probability
|
if random.random() < probability: # random number within probability
|
||||||
next_state = picked_neighbor
|
next_state = picked_neighbor
|
||||||
current_temp = current_temp - (current_temp * rate_of_decrease)
|
current_temp = current_temp - (current_temp * rate_of_decrease)
|
||||||
|
|
||||||
if current_temp < threshold_temp or next_state is None:
|
if current_temp < threshold_temp or next_state is None:
|
||||||
# temperature below threshold, or could not find a suitaable neighbor
|
# temperature below threshold, or could not find a suitable neighbor
|
||||||
search_end = True
|
search_end = True
|
||||||
else:
|
else:
|
||||||
current_state = next_state
|
current_state = next_state
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances
|
This is pure Python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances
|
||||||
between the cities are symmetric (the distance between city 'a' and city 'b' is the same between city 'b' and city 'a').
|
between the cities are symmetric (the distance between city 'a' and city 'b' is the same between city 'b' and city 'a').
|
||||||
The TSP can be represented into a graph. The cities are represented by nodes and the distance between them is
|
The TSP can be represented into a graph. The cities are represented by nodes and the distance between them is
|
||||||
represented by the weight of the ark between the nodes.
|
represented by the weight of the ark between the nodes.
|
||||||
|
@ -14,36 +14,36 @@ def compAndSwap(a, i, j, dire):
|
|||||||
# if dir = 1, and in descending order otherwise (means dir=0).
|
# if dir = 1, and in descending order otherwise (means dir=0).
|
||||||
# The sequence to be sorted starts at index position low,
|
# The sequence to be sorted starts at index position low,
|
||||||
# the parameter cnt is the number of elements to be sorted.
|
# the parameter cnt is the number of elements to be sorted.
|
||||||
def bitonicMerge(a, low, cnt, dire):
|
def bitonic_merge(a, low, cnt, dire):
|
||||||
if cnt > 1:
|
if cnt > 1:
|
||||||
k = int(cnt / 2)
|
k = int(cnt / 2)
|
||||||
for i in range(low, low + k):
|
for i in range(low, low + k):
|
||||||
compAndSwap(a, i, i + k, dire)
|
compAndSwap(a, i, i + k, dire)
|
||||||
bitonicMerge(a, low, k, dire)
|
bitonic_merge(a, low, k, dire)
|
||||||
bitonicMerge(a, low + k, k, dire)
|
bitonic_merge(a, low + k, k, dire)
|
||||||
|
|
||||||
# This function first produces a bitonic sequence by recursively
|
# This function first produces a bitonic sequence by recursively
|
||||||
|
|
||||||
|
|
||||||
# sorting its two halves in opposite sorting orders, and then
|
# sorting its two halves in opposite sorting orders, and then
|
||||||
# calls bitonicMerge to make them in the same order
|
# calls bitonic_merge to make them in the same order
|
||||||
def bitonicSort(a, low, cnt, dire):
|
def bitonic_sort(a, low, cnt, dire):
|
||||||
if cnt > 1:
|
if cnt > 1:
|
||||||
k = int(cnt / 2)
|
k = int(cnt / 2)
|
||||||
bitonicSort(a, low, k, 1)
|
bitonic_sort(a, low, k, 1)
|
||||||
bitonicSort(a, low + k, k, 0)
|
bitonic_sort(a, low + k, k, 0)
|
||||||
bitonicMerge(a, low, cnt, dire)
|
bitonic_merge(a, low, cnt, dire)
|
||||||
|
|
||||||
# Caller of bitonicSort for sorting the entire array of length N
|
# Caller of bitonic_sort for sorting the entire array of length N
|
||||||
|
|
||||||
|
|
||||||
# in ASCENDING order
|
# in ASCENDING order
|
||||||
def sort(a, N, up):
|
def sort(a, N, up):
|
||||||
bitonicSort(a, 0, N, up)
|
bitonic_sort(a, 0, N, up)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Driver code to test above
|
|
||||||
a = []
|
a = []
|
||||||
|
|
||||||
n = int(input().strip())
|
n = int(input().strip())
|
||||||
|
@ -1,5 +1,10 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the bogosort algorithm
|
This is a pure Python implementation of the bogosort algorithm,
|
||||||
|
also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort.
|
||||||
|
Bogosort generates random permutations until it guesses the correct one.
|
||||||
|
|
||||||
|
More info on: https://en.wikipedia.org/wiki/Bogosort
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v bogo_sort.py
|
python -m doctest -v bogo_sort.py
|
||||||
or
|
or
|
||||||
@ -25,7 +30,7 @@ def bogo_sort(collection):
|
|||||||
[-45, -5, -2]
|
[-45, -5, -2]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def isSorted(collection):
|
def is_sorted(collection):
|
||||||
if len(collection) < 2:
|
if len(collection) < 2:
|
||||||
return True
|
return True
|
||||||
for i in range(len(collection) - 1):
|
for i in range(len(collection) - 1):
|
||||||
@ -33,7 +38,7 @@ def bogo_sort(collection):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
while not isSorted(collection):
|
while not is_sorted(collection):
|
||||||
random.shuffle(collection)
|
random.shuffle(collection)
|
||||||
return collection
|
return collection
|
||||||
|
|
||||||
|
@ -1,8 +1,13 @@
|
|||||||
"""
|
"""
|
||||||
|
This is pure Python implementation of comb sort algorithm.
|
||||||
Comb sort is a relatively simple sorting algorithm originally designed by Wlodzimierz Dobosiewicz in 1980.
|
Comb sort is a relatively simple sorting algorithm originally designed by Wlodzimierz Dobosiewicz in 1980.
|
||||||
Later it was rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort.
|
It was rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort algorithm.
|
||||||
|
In bubble sort, distance (or gap) between two compared elements is always one.
|
||||||
|
Comb sort improvement is that gap can be much more than 1, in order to prevent slowing down by small values
|
||||||
|
at the end of a list.
|
||||||
|
|
||||||
|
More info on: https://en.wikipedia.org/wiki/Comb_sort
|
||||||
|
|
||||||
This is pure python implementation of comb sort algorithm
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v comb_sort.py
|
python -m doctest -v comb_sort.py
|
||||||
or
|
or
|
||||||
@ -13,42 +18,44 @@ python comb_sort.py
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def comb_sort(data):
|
def comb_sort(data: list) -> list:
|
||||||
"""Pure implementation of comb sort algorithm in Python
|
"""Pure implementation of comb sort algorithm in Python
|
||||||
:param collection: some mutable ordered collection with heterogeneous
|
:param data: mutable collection with comparable items
|
||||||
comparable items inside
|
:return: the same collection in ascending order
|
||||||
:return: the same collection ordered by ascending
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> comb_sort([0, 5, 3, 2, 2])
|
>>> comb_sort([0, 5, 3, 2, 2])
|
||||||
[0, 2, 2, 3, 5]
|
[0, 2, 2, 3, 5]
|
||||||
>>> comb_sort([])
|
>>> comb_sort([])
|
||||||
[]
|
[]
|
||||||
>>> comb_sort([-2, -5, -45])
|
>>> comb_sort([99, 45, -7, 8, 2, 0, -15, 3])
|
||||||
[-45, -5, -2]
|
[-15, -7, 0, 2, 3, 8, 45, 99]
|
||||||
"""
|
"""
|
||||||
shrink_factor = 1.3
|
shrink_factor = 1.3
|
||||||
gap = len(data)
|
gap = len(data)
|
||||||
swapped = True
|
completed = False
|
||||||
i = 0
|
|
||||||
|
while not completed:
|
||||||
|
|
||||||
while gap > 1 or swapped:
|
|
||||||
# Update the gap value for a next comb
|
# Update the gap value for a next comb
|
||||||
gap = int(float(gap) / shrink_factor)
|
gap = int(gap / shrink_factor)
|
||||||
|
if gap <= 1:
|
||||||
|
completed = True
|
||||||
|
|
||||||
swapped = False
|
index = 0
|
||||||
i = 0
|
while index + gap < len(data):
|
||||||
|
if data[index] > data[index + gap]:
|
||||||
while gap + i < len(data):
|
|
||||||
if data[i] > data[i + gap]:
|
|
||||||
# Swap values
|
# Swap values
|
||||||
data[i], data[i + gap] = data[i + gap], data[i]
|
data[index], data[index + gap] = data[index + gap], data[index]
|
||||||
swapped = True
|
completed = False
|
||||||
i += 1
|
index += 1
|
||||||
|
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
doctest.testmod()
|
||||||
|
|
||||||
user_input = input("Enter numbers separated by a comma:\n").strip()
|
user_input = input("Enter numbers separated by a comma:\n").strip()
|
||||||
unsorted = [int(item) for item in user_input.split(",")]
|
unsorted = [int(item) for item in user_input.split(",")]
|
||||||
print(comb_sort(unsorted))
|
print(comb_sort(unsorted))
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of counting sort algorithm
|
This is pure Python implementation of counting sort algorithm
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v counting_sort.py
|
python -m doctest -v counting_sort.py
|
||||||
or
|
or
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the heap sort algorithm.
|
This is a pure Python implementation of the heap sort algorithm.
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v heap_sort.py
|
python -m doctest -v heap_sort.py
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the insertion sort algorithm
|
This is a pure Python implementation of the insertion sort algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v insertion_sort.py
|
python -m doctest -v insertion_sort.py
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the merge sort algorithm
|
This is a pure Python implementation of the merge sort algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v merge_sort.py
|
python -m doctest -v merge_sort.py
|
||||||
|
@ -18,7 +18,7 @@ processLock = Lock()
|
|||||||
"""
|
"""
|
||||||
The function run by the processes that sorts the list
|
The function run by the processes that sorts the list
|
||||||
|
|
||||||
position = the position in the list the prcoess represents, used to know which
|
position = the position in the list the process represents, used to know which
|
||||||
neighbor we pass our value to
|
neighbor we pass our value to
|
||||||
value = the initial value at list[position]
|
value = the initial value at list[position]
|
||||||
LSend, RSend = the pipes we use to send to our left and right neighbors
|
LSend, RSend = the pipes we use to send to our left and right neighbors
|
||||||
@ -35,7 +35,7 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe):
|
|||||||
# find out we are sorted as it does to sort the list with this algorithm
|
# find out we are sorted as it does to sort the list with this algorithm
|
||||||
for i in range(0, 10):
|
for i in range(0, 10):
|
||||||
|
|
||||||
if (i + position) % 2 == 0 and RSend != None:
|
if (i + position) % 2 == 0 and RSend is not None:
|
||||||
# send your value to your right neighbor
|
# send your value to your right neighbor
|
||||||
processLock.acquire()
|
processLock.acquire()
|
||||||
RSend[1].send(value)
|
RSend[1].send(value)
|
||||||
@ -48,7 +48,7 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe):
|
|||||||
|
|
||||||
# take the lower value since you are on the left
|
# take the lower value since you are on the left
|
||||||
value = min(value, temp)
|
value = min(value, temp)
|
||||||
elif (i + position) % 2 != 0 and LSend != None:
|
elif (i + position) % 2 != 0 and LSend is not None:
|
||||||
# send your value to your left neighbor
|
# send your value to your left neighbor
|
||||||
processLock.acquire()
|
processLock.acquire()
|
||||||
LSend[1].send(value)
|
LSend[1].send(value)
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the pancake sort algorithm
|
This is a pure Python implementation of the pancake sort algorithm
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python3 -m doctest -v pancake_sort.py
|
python3 -m doctest -v pancake_sort.py
|
||||||
or
|
or
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the quick sort algorithm
|
This is a pure Python implementation of the quick sort algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v quick_sort.py
|
python -m doctest -v quick_sort.py
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the selection sort algorithm
|
This is a pure Python implementation of the selection sort algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v selection_sort.py
|
python -m doctest -v selection_sort.py
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure python implementation of the shell sort algorithm
|
This is a pure Python implementation of the shell sort algorithm
|
||||||
|
|
||||||
For doctests run following command:
|
For doctests run following command:
|
||||||
python -m doctest -v shell_sort.py
|
python -m doctest -v shell_sort.py
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
Python implementation of a sort algorithm.
|
Python implementation of a sort algorithm.
|
||||||
Best Case Scenario : O(n)
|
Best Case Scenario : O(n)
|
||||||
Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n)
|
Worst Case Scenario : O(n^2) because native Python functions:min, max and remove are already O(n)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
This is pure python implementation of tree traversal algorithms
|
This is pure Python implementation of tree traversal algorithms
|
||||||
"""
|
"""
|
||||||
import queue
|
import queue
|
||||||
from typing import List
|
from typing import List
|
||||||
|
@ -51,8 +51,6 @@ def get_domain_name(url: str) -> str:
|
|||||||
# Get sub domain name (sub.example.com)
|
# Get sub domain name (sub.example.com)
|
||||||
def get_sub_domain_name(url: str) -> str:
|
def get_sub_domain_name(url: str) -> str:
|
||||||
"""
|
"""
|
||||||
This function get sub domin name
|
|
||||||
|
|
||||||
>>> get_sub_domain_name("https://a.b.c.d/e/f?g=h,i=j#k")
|
>>> get_sub_domain_name("https://a.b.c.d/e/f?g=h,i=j#k")
|
||||||
'a.b.c.d'
|
'a.b.c.d'
|
||||||
>>> get_sub_domain_name("Not a URL!")
|
>>> get_sub_domain_name("Not a URL!")
|
||||||
|
Loading…
Reference in New Issue
Block a user