mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
* Adding nqueens.py for backtracking * Adding sum_of_subsets.py for backtracking * Update nqueens.py * Rename nqueens.py to n_queens.py * Deleting /other/n_queens.py
This commit is contained in:
parent
afb98e6c23
commit
831558d38d
84
backtracking/n_queens.py
Normal file
84
backtracking/n_queens.py
Normal file
@ -0,0 +1,84 @@
|
||||
'''
|
||||
|
||||
The nqueens problem is of placing N queens on a N * N
|
||||
chess board such that no queen can attack any other queens placed
|
||||
on that chess board.
|
||||
This means that one queen cannot have any other queen on its horizontal, vertical and
|
||||
diagonal lines.
|
||||
|
||||
'''
|
||||
solution = []
|
||||
|
||||
def isSafe(board, row, column):
|
||||
'''
|
||||
This function returns a boolean value True if it is safe to place a queen there considering
|
||||
the current state of the board.
|
||||
|
||||
Parameters :
|
||||
board(2D matrix) : board
|
||||
row ,column : coordinates of the cell on a board
|
||||
|
||||
Returns :
|
||||
Boolean Value
|
||||
|
||||
'''
|
||||
for i in range(len(board)):
|
||||
if board[row][i] == 1:
|
||||
return False
|
||||
for i in range(len(board)):
|
||||
if board[i][column] == 1:
|
||||
return False
|
||||
for i,j in zip(range(row,-1,-1),range(column,-1,-1)):
|
||||
if board[i][j] == 1:
|
||||
return False
|
||||
for i,j in zip(range(row,-1,-1),range(column,len(board))):
|
||||
if board[i][j] == 1:
|
||||
return False
|
||||
return True
|
||||
|
||||
def solve(board, row):
|
||||
'''
|
||||
It creates a state space tree and calls the safe function untill it receives a
|
||||
False Boolean and terminates that brach and backtracks to the next
|
||||
poosible solution branch.
|
||||
'''
|
||||
if row >= len(board):
|
||||
'''
|
||||
If the row number exceeds N we have board with a successful combination
|
||||
and that combination is appended to the solution list and the board is printed.
|
||||
|
||||
'''
|
||||
solution.append(board)
|
||||
printboard(board)
|
||||
print()
|
||||
return
|
||||
for i in range(len(board)):
|
||||
'''
|
||||
For every row it iterates through each column to check if it is feesible to place a
|
||||
queen there.
|
||||
If all the combinations for that particaular branch are successfull the board is
|
||||
reinitialized for the next possible combination.
|
||||
'''
|
||||
if isSafe(board,row,i):
|
||||
board[row][i] = 1
|
||||
solve(board,row+1)
|
||||
board[row][i] = 0
|
||||
return False
|
||||
|
||||
def printboard(board):
|
||||
'''
|
||||
Prints the boards that have a successfull combination.
|
||||
'''
|
||||
for i in range(len(board)):
|
||||
for j in range(len(board)):
|
||||
if board[i][j] == 1:
|
||||
print("Q", end = " ")
|
||||
else :
|
||||
print(".", end = " ")
|
||||
print()
|
||||
|
||||
#n=int(input("The no. of queens"))
|
||||
n = 8
|
||||
board = [[0 for i in range(n)]for j in range(n)]
|
||||
solve(board, 0)
|
||||
print("The total no. of solutions are :", len(solution))
|
45
backtracking/sum_of_subsets.py
Normal file
45
backtracking/sum_of_subsets.py
Normal file
@ -0,0 +1,45 @@
|
||||
'''
|
||||
The sum-of-subsetsproblem states that a set of non-negative integers, and a value M,
|
||||
determine all possible subsets of the given set whose summation sum equal to given M.
|
||||
|
||||
Summation of the chosen numbers must be equal to given number M and one number can
|
||||
be used only once.
|
||||
'''
|
||||
|
||||
def generate_sum_of_subsets_soln(nums, max_sum):
|
||||
result = []
|
||||
path = []
|
||||
num_index = 0
|
||||
remaining_nums_sum = sum(nums)
|
||||
create_state_space_tree(nums, max_sum, num_index, path,result, remaining_nums_sum)
|
||||
return result
|
||||
|
||||
def create_state_space_tree(nums,max_sum,num_index,path,result, remaining_nums_sum):
|
||||
'''
|
||||
Creates a state space tree to iterate through each branch using DFS.
|
||||
It terminates the branching of a node when any of the two conditions
|
||||
given below satisfy.
|
||||
This algorithm follows depth-fist-search and backtracks when the node is not branchable.
|
||||
|
||||
'''
|
||||
if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum:
|
||||
return
|
||||
if sum(path) == max_sum:
|
||||
result.append(path)
|
||||
return
|
||||
for num_index in range(num_index,len(nums)):
|
||||
create_state_space_tree(nums, max_sum, num_index + 1, path + [nums[num_index]], result, remaining_nums_sum - nums[num_index])
|
||||
|
||||
'''
|
||||
remove the comment to take an input from the user
|
||||
|
||||
print("Enter the elements")
|
||||
nums = list(map(int, input().split()))
|
||||
print("Enter max_sum sum")
|
||||
max_sum = int(input())
|
||||
|
||||
'''
|
||||
nums = [3, 34, 4, 12, 5, 2]
|
||||
max_sum = 9
|
||||
result = generate_sum_of_subsets_soln(nums,max_sum)
|
||||
print(*result)
|
@ -1,77 +0,0 @@
|
||||
#! /usr/bin/python3
|
||||
import sys
|
||||
|
||||
def nqueens(board_width):
|
||||
board = [0]
|
||||
current_row = 0
|
||||
while True:
|
||||
conflict = False
|
||||
|
||||
for review_index in range(0, current_row):
|
||||
left = board[review_index] - (current_row - review_index)
|
||||
right = board[review_index] + (current_row - review_index);
|
||||
if (board[current_row] == board[review_index] or (left >= 0 and left == board[current_row]) or (right < board_width and right == board[current_row])):
|
||||
conflict = True;
|
||||
break
|
||||
|
||||
if (current_row == 0 and conflict == False):
|
||||
board.append(0)
|
||||
current_row = 1
|
||||
continue
|
||||
|
||||
if (conflict == True):
|
||||
board[current_row] += 1
|
||||
|
||||
if (current_row == 0 and board[current_row] == board_width):
|
||||
print("No solution exists for specificed board size.")
|
||||
return None
|
||||
|
||||
while True:
|
||||
if (board[current_row] == board_width):
|
||||
board[current_row] = 0
|
||||
if (current_row == 0):
|
||||
print("No solution exists for specificed board size.")
|
||||
return None
|
||||
|
||||
board.pop()
|
||||
current_row -= 1
|
||||
board[current_row] += 1
|
||||
|
||||
if board[current_row] != board_width:
|
||||
break
|
||||
else:
|
||||
current_row += 1
|
||||
if (current_row == board_width):
|
||||
break
|
||||
|
||||
board.append(0)
|
||||
return board
|
||||
|
||||
def print_board(board):
|
||||
if (board == None):
|
||||
return
|
||||
|
||||
board_width = len(board)
|
||||
for row in range(board_width):
|
||||
line_print = []
|
||||
for column in range(board_width):
|
||||
if column == board[row]:
|
||||
line_print.append("Q")
|
||||
else:
|
||||
line_print.append(".")
|
||||
print(line_print)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
default_width = 8
|
||||
for arg in sys.argv:
|
||||
if (arg.isdecimal() and int(arg) > 3):
|
||||
default_width = int(arg)
|
||||
break
|
||||
|
||||
if (default_width == 8):
|
||||
print("Running algorithm with board size of 8. Specify an alternative Chess board size for N-Queens as a command line argument.")
|
||||
|
||||
board = nqueens(default_width)
|
||||
print(board)
|
||||
print_board(board)
|
Loading…
Reference in New Issue
Block a user