mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Fix style of the first ten solutions for Project Euler (#3242)
* Fix style of the first ten solutions for Project Euler - Unify the header docstring, and add reference URLs to wikipedia or similar - Fix docstrings to be properly multilined - Add newlines where appropriate - Add doctests where they were missing - Remove doctests that test for the correct solution - fix obvious spelling or grammar mistakes in comments and exception messages - Fix line endings to be UNIX. This makes two of the files seem to have changed completely - no functional changes in any of the solutions were done (except for the spelling fixes mentioned above) * Fix docstrings and main function as per Style Guide
This commit is contained in:
parent
5be77f33f7
commit
98e9d6bdb6
@ -1,13 +1,18 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""Returns the sum of all the multiples of 3 or 5 below n.
|
||||
"""
|
||||
Returns the sum of all the multiples of 3 or 5 below n.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
@ -25,4 +30,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,13 +1,18 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""Returns the sum of all the multiples of 3 or 5 below n.
|
||||
"""
|
||||
Returns the sum of all the multiples of 3 or 5 below n.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
@ -30,4 +35,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,8 +1,12 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
@ -57,4 +61,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,47 +1,52 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""Returns the sum of all the multiples of 3 or 5 below n.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
>>> solution(4)
|
||||
3
|
||||
>>> solution(10)
|
||||
23
|
||||
>>> solution(600)
|
||||
83700
|
||||
"""
|
||||
|
||||
xmulti = []
|
||||
zmulti = []
|
||||
z = 3
|
||||
x = 5
|
||||
temp = 1
|
||||
while True:
|
||||
result = z * temp
|
||||
if result < n:
|
||||
zmulti.append(result)
|
||||
temp += 1
|
||||
else:
|
||||
temp = 1
|
||||
break
|
||||
while True:
|
||||
result = x * temp
|
||||
if result < n:
|
||||
xmulti.append(result)
|
||||
temp += 1
|
||||
else:
|
||||
break
|
||||
collection = list(set(xmulti + zmulti))
|
||||
return sum(collection)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
"""
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""
|
||||
Returns the sum of all the multiples of 3 or 5 below n.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
>>> solution(4)
|
||||
3
|
||||
>>> solution(10)
|
||||
23
|
||||
>>> solution(600)
|
||||
83700
|
||||
"""
|
||||
|
||||
xmulti = []
|
||||
zmulti = []
|
||||
z = 3
|
||||
x = 5
|
||||
temp = 1
|
||||
while True:
|
||||
result = z * temp
|
||||
if result < n:
|
||||
zmulti.append(result)
|
||||
temp += 1
|
||||
else:
|
||||
temp = 1
|
||||
break
|
||||
while True:
|
||||
result = x * temp
|
||||
if result < n:
|
||||
xmulti.append(result)
|
||||
temp += 1
|
||||
else:
|
||||
break
|
||||
collection = list(set(xmulti + zmulti))
|
||||
return sum(collection)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,14 +1,19 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""Returns the sum of all the multiples of 3 or 5 below n.
|
||||
A straightforward pythonic solution using list comprehension.
|
||||
"""
|
||||
Returns the sum of all the multiples of 3 or 5 below n.
|
||||
A straightforward pythonic solution using list comprehension.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
@ -24,4 +29,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,13 +1,18 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""Returns the sum of all the multiples of 3 or 5 below n.
|
||||
"""
|
||||
Returns the sum of all the multiples of 3 or 5 below n.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
@ -31,4 +36,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,13 +1,18 @@
|
||||
"""
|
||||
Problem Statement:
|
||||
Project Euler Problem 1: https://projecteuler.net/problem=1
|
||||
|
||||
Multiples of 3 and 5
|
||||
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""Returns the sum of all the multiples of 3 or 5 below n.
|
||||
"""
|
||||
Returns the sum of all the multiples of 3 or 5 below n.
|
||||
|
||||
>>> solution(3)
|
||||
0
|
||||
@ -29,4 +34,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,19 +1,25 @@
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
Project Euler Problem 2: https://projecteuler.net/problem=2
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
Even Fibonacci Numbers
|
||||
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous
|
||||
two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
four million, find the sum of the even-valued terms.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Fibonacci_number
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 4000000) -> int:
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
"""
|
||||
Returns the sum of all even fibonacci sequence elements that are lower
|
||||
or equal to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
@ -26,6 +32,7 @@ def solution(n: int = 4000000) -> int:
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
|
||||
i = 1
|
||||
j = 2
|
||||
total = 0
|
||||
@ -38,4 +45,4 @@ def solution(n: int = 4000000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,39 +1,46 @@
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 4000000) -> int:
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
>>> solution(15)
|
||||
10
|
||||
>>> solution(2)
|
||||
2
|
||||
>>> solution(1)
|
||||
0
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
even_fibs = []
|
||||
a, b = 0, 1
|
||||
while b <= n:
|
||||
if b % 2 == 0:
|
||||
even_fibs.append(b)
|
||||
a, b = b, a + b
|
||||
return sum(even_fibs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
"""
|
||||
Project Euler Problem 2: https://projecteuler.net/problem=2
|
||||
|
||||
Even Fibonacci Numbers
|
||||
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous
|
||||
two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
four million, find the sum of the even-valued terms.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Fibonacci_number
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 4000000) -> int:
|
||||
"""
|
||||
Returns the sum of all even fibonacci sequence elements that are lower
|
||||
or equal to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
>>> solution(15)
|
||||
10
|
||||
>>> solution(2)
|
||||
2
|
||||
>>> solution(1)
|
||||
0
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
|
||||
even_fibs = []
|
||||
a, b = 0, 1
|
||||
while b <= n:
|
||||
if b % 2 == 0:
|
||||
even_fibs.append(b)
|
||||
a, b = b, a + b
|
||||
return sum(even_fibs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,19 +1,25 @@
|
||||
"""
|
||||
Problem:
|
||||
Project Euler Problem 2: https://projecteuler.net/problem=2
|
||||
|
||||
Even Fibonacci Numbers
|
||||
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous
|
||||
two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
four million, find the sum of the even-valued terms.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Fibonacci_number
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 4000000) -> int:
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
"""
|
||||
Returns the sum of all even fibonacci sequence elements that are lower
|
||||
or equal to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
@ -26,6 +32,7 @@ def solution(n: int = 4000000) -> int:
|
||||
>>> solution(34)
|
||||
44
|
||||
"""
|
||||
|
||||
if n <= 1:
|
||||
return 0
|
||||
a = 0
|
||||
@ -38,4 +45,4 @@ def solution(n: int = 4000000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,21 +1,27 @@
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
Project Euler Problem 2: https://projecteuler.net/problem=2
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
Even Fibonacci Numbers
|
||||
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous
|
||||
two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
four million, find the sum of the even-valued terms.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Fibonacci_number
|
||||
"""
|
||||
import math
|
||||
from decimal import Decimal, getcontext
|
||||
|
||||
|
||||
def solution(n: int = 4000000) -> int:
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
"""
|
||||
Returns the sum of all even fibonacci sequence elements that are lower
|
||||
or equal to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
@ -32,26 +38,27 @@ def solution(n: int = 4000000) -> int:
|
||||
>>> solution(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution(-17)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
>>> solution("asd")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
"""
|
||||
|
||||
try:
|
||||
n = int(n)
|
||||
except (TypeError, ValueError):
|
||||
raise TypeError("Parameter n must be int or passive of cast to int.")
|
||||
raise TypeError("Parameter n must be int or castable to int.")
|
||||
if n <= 0:
|
||||
raise ValueError("Parameter n must be greater or equal to one.")
|
||||
raise ValueError("Parameter n must be greater than or equal to one.")
|
||||
getcontext().prec = 100
|
||||
phi = (Decimal(5) ** Decimal(0.5) + 1) / Decimal(2)
|
||||
|
||||
@ -62,4 +69,4 @@ def solution(n: int = 4000000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,19 +1,25 @@
|
||||
"""
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two
|
||||
terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
Project Euler Problem 2: https://projecteuler.net/problem=2
|
||||
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
Even Fibonacci Numbers
|
||||
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous
|
||||
two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed
|
||||
n, find the sum of the even-valued terms. e.g. for n=10, we have {2,8}, sum is
|
||||
10.
|
||||
four million, find the sum of the even-valued terms.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Fibonacci_number
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 4000000) -> int:
|
||||
"""Returns the sum of all fibonacci sequence even elements that are lower
|
||||
or equals to n.
|
||||
"""
|
||||
Returns the sum of all even fibonacci sequence elements that are lower
|
||||
or equal to n.
|
||||
|
||||
>>> solution(10)
|
||||
10
|
||||
@ -43,4 +49,4 @@ def solution(n: int = 4000000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,16 +1,22 @@
|
||||
"""
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor
|
||||
of a given number N?
|
||||
Project Euler Problem 3: https://projecteuler.net/problem=3
|
||||
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
Largest prime factor
|
||||
|
||||
The prime factors of 13195 are 5, 7, 13 and 29.
|
||||
|
||||
What is the largest prime factor of the number 600851475143?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number#Unique_factorization
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def isprime(num: int) -> bool:
|
||||
"""Returns boolean representing primality of given number num.
|
||||
"""
|
||||
Returns boolean representing primality of given number num.
|
||||
|
||||
>>> isprime(2)
|
||||
True
|
||||
>>> isprime(3)
|
||||
@ -22,14 +28,15 @@ def isprime(num: int) -> bool:
|
||||
>>> isprime(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter num must be greater or equal to two.
|
||||
ValueError: Parameter num must be greater than or equal to two.
|
||||
>>> isprime(1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter num must be greater or equal to two.
|
||||
ValueError: Parameter num must be greater than or equal to two.
|
||||
"""
|
||||
|
||||
if num <= 1:
|
||||
raise ValueError("Parameter num must be greater or equal to two.")
|
||||
raise ValueError("Parameter num must be greater than or equal to two.")
|
||||
if num == 2:
|
||||
return True
|
||||
elif num % 2 == 0:
|
||||
@ -41,7 +48,9 @@ def isprime(num: int) -> bool:
|
||||
|
||||
|
||||
def solution(n: int = 600851475143) -> int:
|
||||
"""Returns the largest prime factor of a given number n.
|
||||
"""
|
||||
Returns the largest prime factor of a given number n.
|
||||
|
||||
>>> solution(13195)
|
||||
29
|
||||
>>> solution(10)
|
||||
@ -53,26 +62,27 @@ def solution(n: int = 600851475143) -> int:
|
||||
>>> solution(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution(-17)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
>>> solution("asd")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
"""
|
||||
|
||||
try:
|
||||
n = int(n)
|
||||
except (TypeError, ValueError):
|
||||
raise TypeError("Parameter n must be int or passive of cast to int.")
|
||||
raise TypeError("Parameter n must be int or castable to int.")
|
||||
if n <= 0:
|
||||
raise ValueError("Parameter n must be greater or equal to one.")
|
||||
raise ValueError("Parameter n must be greater than or equal to one.")
|
||||
max_number = 0
|
||||
if isprime(n):
|
||||
return n
|
||||
@ -91,4 +101,4 @@ def solution(n: int = 600851475143) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,14 +1,21 @@
|
||||
"""
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor
|
||||
of a given number N?
|
||||
Project Euler Problem 3: https://projecteuler.net/problem=3
|
||||
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
Largest prime factor
|
||||
|
||||
The prime factors of 13195 are 5, 7, 13 and 29.
|
||||
|
||||
What is the largest prime factor of the number 600851475143?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number#Unique_factorization
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 600851475143) -> int:
|
||||
"""Returns the largest prime factor of a given number n.
|
||||
"""
|
||||
Returns the largest prime factor of a given number n.
|
||||
|
||||
>>> solution(13195)
|
||||
29
|
||||
>>> solution(10)
|
||||
@ -20,26 +27,27 @@ def solution(n: int = 600851475143) -> int:
|
||||
>>> solution(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution(-17)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
>>> solution("asd")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
"""
|
||||
|
||||
try:
|
||||
n = int(n)
|
||||
except (TypeError, ValueError):
|
||||
raise TypeError("Parameter n must be int or passive of cast to int.")
|
||||
raise TypeError("Parameter n must be int or castable to int.")
|
||||
if n <= 0:
|
||||
raise ValueError("Parameter n must be greater or equal to one.")
|
||||
raise ValueError("Parameter n must be greater than or equal to one.")
|
||||
prime = 1
|
||||
i = 2
|
||||
while i * i <= n:
|
||||
@ -53,4 +61,4 @@ def solution(n: int = 600851475143) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,14 +1,21 @@
|
||||
"""
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor
|
||||
of a given number N?
|
||||
Project Euler Problem 3: https://projecteuler.net/problem=3
|
||||
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
Largest prime factor
|
||||
|
||||
The prime factors of 13195 are 5, 7, 13 and 29.
|
||||
|
||||
What is the largest prime factor of the number 600851475143?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number#Unique_factorization
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 600851475143) -> int:
|
||||
"""Returns the largest prime factor of a given number n.
|
||||
"""
|
||||
Returns the largest prime factor of a given number n.
|
||||
|
||||
>>> solution(13195)
|
||||
29
|
||||
>>> solution(10)
|
||||
@ -20,26 +27,27 @@ def solution(n: int = 600851475143) -> int:
|
||||
>>> solution(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution(-17)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
>>> solution("asd")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
"""
|
||||
|
||||
try:
|
||||
n = int(n)
|
||||
except (TypeError, ValueError):
|
||||
raise TypeError("Parameter n must be int or passive of cast to int.")
|
||||
raise TypeError("Parameter n must be int or castable to int.")
|
||||
if n <= 0:
|
||||
raise ValueError("Parameter n must be greater or equal to one.")
|
||||
raise ValueError("Parameter n must be greater than or equal to one.")
|
||||
i = 2
|
||||
ans = 0
|
||||
if n == 2:
|
||||
@ -55,4 +63,4 @@ def solution(n: int = 600851475143) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,15 +1,21 @@
|
||||
"""
|
||||
Problem:
|
||||
A palindromic number reads the same both ways. The largest palindrome made from
|
||||
the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
Project Euler Problem 4: https://projecteuler.net/problem=4
|
||||
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which
|
||||
is less than N.
|
||||
Largest palindrome product
|
||||
|
||||
A palindromic number reads the same both ways. The largest palindrome made
|
||||
from the product of two 2-digit numbers is 9009 = 91 × 99.
|
||||
|
||||
Find the largest palindrome made from the product of two 3-digit numbers.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Palindromic_number
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 998001) -> int:
|
||||
"""Returns the largest palindrome made from the product of two 3-digit
|
||||
"""
|
||||
Returns the largest palindrome made from the product of two 3-digit
|
||||
numbers which is less than n.
|
||||
|
||||
>>> solution(20000)
|
||||
@ -23,10 +29,10 @@ def solution(n: int = 998001) -> int:
|
||||
...
|
||||
ValueError: That number is larger than our acceptable range.
|
||||
"""
|
||||
|
||||
# fetches the next number
|
||||
for number in range(n - 1, 9999, -1):
|
||||
|
||||
# converts number into string.
|
||||
str_number = str(number)
|
||||
|
||||
# checks whether 'str_number' is a palindrome.
|
||||
@ -44,8 +50,4 @@ def solution(n: int = 998001) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,15 +1,21 @@
|
||||
"""
|
||||
Problem:
|
||||
A palindromic number reads the same both ways. The largest palindrome made from
|
||||
the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
Project Euler Problem 4: https://projecteuler.net/problem=4
|
||||
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which
|
||||
is less than N.
|
||||
Largest palindrome product
|
||||
|
||||
A palindromic number reads the same both ways. The largest palindrome made
|
||||
from the product of two 2-digit numbers is 9009 = 91 × 99.
|
||||
|
||||
Find the largest palindrome made from the product of two 3-digit numbers.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Palindromic_number
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 998001) -> int:
|
||||
"""Returns the largest palindrome made from the product of two 3-digit
|
||||
"""
|
||||
Returns the largest palindrome made from the product of two 3-digit
|
||||
numbers which is less than n.
|
||||
|
||||
>>> solution(20000)
|
||||
@ -19,6 +25,7 @@ def solution(n: int = 998001) -> int:
|
||||
>>> solution(40000)
|
||||
39893
|
||||
"""
|
||||
|
||||
answer = 0
|
||||
for i in range(999, 99, -1): # 3 digit numbers range from 999 down to 100
|
||||
for j in range(999, 99, -1):
|
||||
@ -29,4 +36,4 @@ def solution(n: int = 998001) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,23 +1,28 @@
|
||||
"""
|
||||
Problem:
|
||||
2520 is the smallest number that can be divided by each of the numbers from 1
|
||||
to 10 without any remainder.
|
||||
Project Euler Problem 5: https://projecteuler.net/problem=5
|
||||
|
||||
What is the smallest positive number that is evenly divisible(divisible with no
|
||||
remainder) by all of the numbers from 1 to N?
|
||||
Smallest multiple
|
||||
|
||||
2520 is the smallest number that can be divided by each of the numbers
|
||||
from 1 to 10 without any remainder.
|
||||
|
||||
What is the smallest positive number that is _evenly divisible_ by all
|
||||
of the numbers from 1 to 20?
|
||||
|
||||
References:
|
||||
- https://en.wiktionary.org/wiki/evenly_divisible
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 20) -> int:
|
||||
"""Returns the smallest positive number that is evenly divisible(divisible
|
||||
"""
|
||||
Returns the smallest positive number that is evenly divisible (divisible
|
||||
with no remainder) by all of the numbers from 1 to n.
|
||||
|
||||
>>> solution(10)
|
||||
2520
|
||||
>>> solution(15)
|
||||
360360
|
||||
>>> solution(20)
|
||||
232792560
|
||||
>>> solution(22)
|
||||
232792560
|
||||
>>> solution(3.4)
|
||||
@ -25,26 +30,27 @@ def solution(n: int = 20) -> int:
|
||||
>>> solution(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution(-17)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter n must be greater or equal to one.
|
||||
ValueError: Parameter n must be greater than or equal to one.
|
||||
>>> solution([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
>>> solution("asd")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter n must be int or passive of cast to int.
|
||||
TypeError: Parameter n must be int or castable to int.
|
||||
"""
|
||||
|
||||
try:
|
||||
n = int(n)
|
||||
except (TypeError, ValueError):
|
||||
raise TypeError("Parameter n must be int or passive of cast to int.")
|
||||
raise TypeError("Parameter n must be int or castable to int.")
|
||||
if n <= 0:
|
||||
raise ValueError("Parameter n must be greater or equal to one.")
|
||||
raise ValueError("Parameter n must be greater than or equal to one.")
|
||||
i = 0
|
||||
while 1:
|
||||
i += n * (n - 1)
|
||||
@ -60,4 +66,4 @@ def solution(n: int = 20) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,38 +1,70 @@
|
||||
"""
|
||||
Problem:
|
||||
2520 is the smallest number that can be divided by each of the numbers from 1
|
||||
to 10 without any remainder.
|
||||
Project Euler Problem 5: https://projecteuler.net/problem=5
|
||||
|
||||
What is the smallest positive number that is evenly divisible(divisible with no
|
||||
remainder) by all of the numbers from 1 to N?
|
||||
Smallest multiple
|
||||
|
||||
2520 is the smallest number that can be divided by each of the numbers
|
||||
from 1 to 10 without any remainder.
|
||||
|
||||
What is the smallest positive number that is _evenly divisible_ by all
|
||||
of the numbers from 1 to 20?
|
||||
|
||||
References:
|
||||
- https://en.wiktionary.org/wiki/evenly_divisible
|
||||
- https://en.wikipedia.org/wiki/Euclidean_algorithm
|
||||
- https://en.wikipedia.org/wiki/Least_common_multiple
|
||||
"""
|
||||
""" Euclidean GCD Algorithm """
|
||||
|
||||
|
||||
def gcd(x: int, y: int) -> int:
|
||||
"""
|
||||
Euclidean GCD algorithm (Greatest Common Divisor)
|
||||
|
||||
>>> gcd(0, 0)
|
||||
0
|
||||
>>> gcd(23, 42)
|
||||
1
|
||||
>>> gcd(15, 33)
|
||||
3
|
||||
>>> gcd(12345, 67890)
|
||||
15
|
||||
"""
|
||||
|
||||
return x if y == 0 else gcd(y, x % y)
|
||||
|
||||
|
||||
""" Using the property lcm*gcd of two numbers = product of them """
|
||||
|
||||
|
||||
def lcm(x: int, y: int) -> int:
|
||||
"""
|
||||
Least Common Multiple.
|
||||
|
||||
Using the property that lcm(a, b) * gcd(a, b) = a*b
|
||||
|
||||
>>> lcm(3, 15)
|
||||
15
|
||||
>>> lcm(1, 27)
|
||||
27
|
||||
>>> lcm(13, 27)
|
||||
351
|
||||
>>> lcm(64, 48)
|
||||
192
|
||||
"""
|
||||
|
||||
return (x * y) // gcd(x, y)
|
||||
|
||||
|
||||
def solution(n: int = 20) -> int:
|
||||
"""Returns the smallest positive number that is evenly divisible(divisible
|
||||
"""
|
||||
Returns the smallest positive number that is evenly divisible (divisible
|
||||
with no remainder) by all of the numbers from 1 to n.
|
||||
|
||||
>>> solution(10)
|
||||
2520
|
||||
>>> solution(15)
|
||||
360360
|
||||
>>> solution(20)
|
||||
232792560
|
||||
>>> solution(22)
|
||||
232792560
|
||||
"""
|
||||
|
||||
g = 1
|
||||
for i in range(1, n + 1):
|
||||
g = lcm(g, i)
|
||||
@ -40,4 +72,4 @@ def solution(n: int = 20) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,22 +1,25 @@
|
||||
"""
|
||||
Problem 6: https://projecteuler.net/problem=6
|
||||
Project Euler Problem 6: https://projecteuler.net/problem=6
|
||||
|
||||
Sum square difference
|
||||
|
||||
The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
(1 + 2 + ... + 10)^2 = 55^2 = 3025
|
||||
|
||||
Hence the difference between the sum of the squares of the first ten natural
|
||||
numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Hence the difference between the sum of the squares of the first ten
|
||||
natural numbers and the square of the sum is 3025 - 385 = 2640.
|
||||
|
||||
Find the difference between the sum of the squares of the first N natural
|
||||
numbers and the square of the sum.
|
||||
Find the difference between the sum of the squares of the first one
|
||||
hundred natural numbers and the square of the sum.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 100) -> int:
|
||||
"""Returns the difference between the sum of the squares of the first n
|
||||
"""
|
||||
Returns the difference between the sum of the squares of the first n
|
||||
natural numbers and the square of the sum.
|
||||
|
||||
>>> solution(10)
|
||||
@ -27,9 +30,8 @@ def solution(n: int = 100) -> int:
|
||||
41230
|
||||
>>> solution(50)
|
||||
1582700
|
||||
>>> solution()
|
||||
25164150
|
||||
"""
|
||||
|
||||
sum_of_squares = 0
|
||||
sum_of_ints = 0
|
||||
for i in range(1, n + 1):
|
||||
@ -39,7 +41,4 @@ def solution(n: int = 100) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,22 +1,25 @@
|
||||
"""
|
||||
Problem 6: https://projecteuler.net/problem=6
|
||||
Project Euler Problem 6: https://projecteuler.net/problem=6
|
||||
|
||||
Sum square difference
|
||||
|
||||
The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
(1 + 2 + ... + 10)^2 = 55^2 = 3025
|
||||
|
||||
Hence the difference between the sum of the squares of the first ten natural
|
||||
numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Hence the difference between the sum of the squares of the first ten
|
||||
natural numbers and the square of the sum is 3025 - 385 = 2640.
|
||||
|
||||
Find the difference between the sum of the squares of the first N natural
|
||||
numbers and the square of the sum.
|
||||
Find the difference between the sum of the squares of the first one
|
||||
hundred natural numbers and the square of the sum.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 100) -> int:
|
||||
"""Returns the difference between the sum of the squares of the first n
|
||||
"""
|
||||
Returns the difference between the sum of the squares of the first n
|
||||
natural numbers and the square of the sum.
|
||||
|
||||
>>> solution(10)
|
||||
@ -27,16 +30,12 @@ def solution(n: int = 100) -> int:
|
||||
41230
|
||||
>>> solution(50)
|
||||
1582700
|
||||
>>> solution()
|
||||
25164150
|
||||
"""
|
||||
|
||||
sum_cubes = (n * (n + 1) // 2) ** 2
|
||||
sum_squares = n * (n + 1) * (2 * n + 1) // 6
|
||||
return sum_cubes - sum_squares
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,23 +1,26 @@
|
||||
"""
|
||||
Problem 6: https://projecteuler.net/problem=6
|
||||
Project Euler Problem 6: https://projecteuler.net/problem=6
|
||||
|
||||
Sum square difference
|
||||
|
||||
The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
(1 + 2 + ... + 10)^2 = 55^2 = 3025
|
||||
|
||||
Hence the difference between the sum of the squares of the first ten natural
|
||||
numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Hence the difference between the sum of the squares of the first ten
|
||||
natural numbers and the square of the sum is 3025 - 385 = 2640.
|
||||
|
||||
Find the difference between the sum of the squares of the first N natural
|
||||
numbers and the square of the sum.
|
||||
Find the difference between the sum of the squares of the first one
|
||||
hundred natural numbers and the square of the sum.
|
||||
"""
|
||||
import math
|
||||
|
||||
|
||||
def solution(n: int = 100) -> int:
|
||||
"""Returns the difference between the sum of the squares of the first n
|
||||
"""
|
||||
Returns the difference between the sum of the squares of the first n
|
||||
natural numbers and the square of the sum.
|
||||
|
||||
>>> solution(10)
|
||||
@ -28,16 +31,12 @@ def solution(n: int = 100) -> int:
|
||||
41230
|
||||
>>> solution(50)
|
||||
1582700
|
||||
>>> solution()
|
||||
25164150
|
||||
"""
|
||||
|
||||
sum_of_squares = sum([i * i for i in range(1, n + 1)])
|
||||
square_of_sum = int(math.pow(sum(range(1, n + 1)), 2))
|
||||
return square_of_sum - sum_of_squares
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,22 +1,25 @@
|
||||
"""
|
||||
Problem 6: https://projecteuler.net/problem=6
|
||||
Project Euler Problem 6: https://projecteuler.net/problem=6
|
||||
|
||||
Sum square difference
|
||||
|
||||
The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
(1 + 2 + ... + 10)^2 = 55^2 = 3025
|
||||
|
||||
Hence the difference between the sum of the squares of the first ten natural
|
||||
numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Hence the difference between the sum of the squares of the first ten
|
||||
natural numbers and the square of the sum is 3025 - 385 = 2640.
|
||||
|
||||
Find the difference between the sum of the squares of the first N natural
|
||||
numbers and the square of the sum.
|
||||
Find the difference between the sum of the squares of the first one
|
||||
hundred natural numbers and the square of the sum.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 100) -> int:
|
||||
"""Returns the difference between the sum of the squares of the first n
|
||||
"""
|
||||
Returns the difference between the sum of the squares of the first n
|
||||
natural numbers and the square of the sum.
|
||||
|
||||
>>> solution(10)
|
||||
@ -27,16 +30,12 @@ def solution(n: int = 100) -> int:
|
||||
41230
|
||||
>>> solution(50)
|
||||
1582700
|
||||
>>> solution()
|
||||
25164150
|
||||
"""
|
||||
|
||||
sum_of_squares = n * (n + 1) * (2 * n + 1) / 6
|
||||
square_of_sum = (n * (n + 1) / 2) ** 2
|
||||
return int(square_of_sum - sum_of_squares)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
print(solution(int(input("Enter a number: ").strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,17 +1,34 @@
|
||||
"""
|
||||
Problem 7: https://projecteuler.net/problem=7
|
||||
Project Euler Problem 7: https://projecteuler.net/problem=7
|
||||
|
||||
By listing the first six prime numbers:
|
||||
10001st prime
|
||||
|
||||
2, 3, 5, 7, 11, and 13
|
||||
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we
|
||||
can see that the 6th prime is 13.
|
||||
|
||||
We can see that the 6th prime is 13. What is the Nth prime number?
|
||||
What is the 10001st prime number?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number
|
||||
"""
|
||||
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def is_prime(num: int) -> bool:
|
||||
"""Determines whether the given number is prime or not"""
|
||||
"""
|
||||
Determines whether the given number is prime or not
|
||||
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> is_prime(15)
|
||||
False
|
||||
>>> is_prime(29)
|
||||
True
|
||||
>>> is_prime(0)
|
||||
False
|
||||
"""
|
||||
|
||||
if num == 2:
|
||||
return True
|
||||
elif num % 2 == 0:
|
||||
@ -25,7 +42,8 @@ def is_prime(num: int) -> bool:
|
||||
|
||||
|
||||
def solution(nth: int = 10001) -> int:
|
||||
"""Returns the n-th prime number.
|
||||
"""
|
||||
Returns the n-th prime number.
|
||||
|
||||
>>> solution(6)
|
||||
13
|
||||
@ -39,9 +57,8 @@ def solution(nth: int = 10001) -> int:
|
||||
229
|
||||
>>> solution(100)
|
||||
541
|
||||
>>> solution()
|
||||
104743
|
||||
"""
|
||||
|
||||
count = 0
|
||||
number = 1
|
||||
while count != nth and number < 3:
|
||||
@ -56,4 +73,4 @@ def solution(nth: int = 10001) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,16 +1,30 @@
|
||||
"""
|
||||
Problem 7: https://projecteuler.net/problem=7
|
||||
Project Euler Problem 7: https://projecteuler.net/problem=7
|
||||
|
||||
By listing the first six prime numbers:
|
||||
10001st prime
|
||||
|
||||
2, 3, 5, 7, 11, and 13
|
||||
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we
|
||||
can see that the 6th prime is 13.
|
||||
|
||||
We can see that the 6th prime is 13. What is the Nth prime number?
|
||||
What is the 10001st prime number?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number
|
||||
"""
|
||||
|
||||
|
||||
def isprime(number: int) -> bool:
|
||||
"""Determines whether the given number is prime or not"""
|
||||
"""
|
||||
Determines whether the given number is prime or not
|
||||
|
||||
>>> isprime(2)
|
||||
True
|
||||
>>> isprime(15)
|
||||
False
|
||||
>>> isprime(29)
|
||||
True
|
||||
"""
|
||||
|
||||
for i in range(2, int(number ** 0.5) + 1):
|
||||
if number % i == 0:
|
||||
return False
|
||||
@ -18,7 +32,8 @@ def isprime(number: int) -> bool:
|
||||
|
||||
|
||||
def solution(nth: int = 10001) -> int:
|
||||
"""Returns the n-th prime number.
|
||||
"""
|
||||
Returns the n-th prime number.
|
||||
|
||||
>>> solution(6)
|
||||
13
|
||||
@ -32,35 +47,32 @@ def solution(nth: int = 10001) -> int:
|
||||
229
|
||||
>>> solution(100)
|
||||
541
|
||||
>>> solution()
|
||||
104743
|
||||
>>> solution(3.4)
|
||||
5
|
||||
>>> solution(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter nth must be greater or equal to one.
|
||||
ValueError: Parameter nth must be greater than or equal to one.
|
||||
>>> solution(-17)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Parameter nth must be greater or equal to one.
|
||||
ValueError: Parameter nth must be greater than or equal to one.
|
||||
>>> solution([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter nth must be int or passive of cast to int.
|
||||
TypeError: Parameter nth must be int or castable to int.
|
||||
>>> solution("asd")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Parameter nth must be int or passive of cast to int.
|
||||
TypeError: Parameter nth must be int or castable to int.
|
||||
"""
|
||||
|
||||
try:
|
||||
nth = int(nth)
|
||||
except (TypeError, ValueError):
|
||||
raise TypeError(
|
||||
"Parameter nth must be int or passive of cast to int."
|
||||
) from None
|
||||
raise TypeError("Parameter nth must be int or castable to int.") from None
|
||||
if nth <= 0:
|
||||
raise ValueError("Parameter nth must be greater or equal to one.")
|
||||
raise ValueError("Parameter nth must be greater than or equal to one.")
|
||||
primes = []
|
||||
num = 2
|
||||
while len(primes) < nth:
|
||||
@ -73,4 +85,4 @@ def solution(nth: int = 10001) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,24 +1,42 @@
|
||||
"""
|
||||
Project 7: https://projecteuler.net/problem=7
|
||||
Project Euler Problem 7: https://projecteuler.net/problem=7
|
||||
|
||||
By listing the first six prime numbers:
|
||||
10001st prime
|
||||
|
||||
2, 3, 5, 7, 11, and 13
|
||||
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we
|
||||
can see that the 6th prime is 13.
|
||||
|
||||
We can see that the 6th prime is 13. What is the Nth prime number?
|
||||
What is the 10001st prime number?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number
|
||||
"""
|
||||
import itertools
|
||||
import math
|
||||
|
||||
|
||||
def prime_check(number: int) -> bool:
|
||||
"""Determines whether a given number is prime or not"""
|
||||
"""
|
||||
Determines whether a given number is prime or not
|
||||
|
||||
>>> prime_check(2)
|
||||
True
|
||||
>>> prime_check(15)
|
||||
False
|
||||
>>> prime_check(29)
|
||||
True
|
||||
"""
|
||||
|
||||
if number % 2 == 0 and number > 2:
|
||||
return False
|
||||
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))
|
||||
|
||||
|
||||
def prime_generator():
|
||||
"""
|
||||
Generate a sequence of prime numbers
|
||||
"""
|
||||
|
||||
num = 2
|
||||
while True:
|
||||
if prime_check(num):
|
||||
@ -27,7 +45,8 @@ def prime_generator():
|
||||
|
||||
|
||||
def solution(nth: int = 10001) -> int:
|
||||
"""Returns the n-th prime number.
|
||||
"""
|
||||
Returns the n-th prime number.
|
||||
|
||||
>>> solution(6)
|
||||
13
|
||||
@ -41,11 +60,9 @@ def solution(nth: int = 10001) -> int:
|
||||
229
|
||||
>>> solution(100)
|
||||
541
|
||||
>>> solution()
|
||||
104743
|
||||
"""
|
||||
return next(itertools.islice(prime_generator(), nth - 1, nth))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,33 +1,36 @@
|
||||
"""
|
||||
Problem 8: https://projecteuler.net/problem=8
|
||||
Project Euler Problem 8: https://projecteuler.net/problem=8
|
||||
|
||||
Largest product in a series
|
||||
|
||||
The four adjacent digits in the 1000-digit number that have the greatest
|
||||
product are 9 × 9 × 8 × 9 = 5832.
|
||||
|
||||
73167176531330624919225119674426574742355349194934
|
||||
96983520312774506326239578318016984801869478851843
|
||||
85861560789112949495459501737958331952853208805511
|
||||
12540698747158523863050715693290963295227443043557
|
||||
66896648950445244523161731856403098711121722383113
|
||||
62229893423380308135336276614282806444486645238749
|
||||
30358907296290491560440772390713810515859307960866
|
||||
70172427121883998797908792274921901699720888093776
|
||||
65727333001053367881220235421809751254540594752243
|
||||
52584907711670556013604839586446706324415722155397
|
||||
53697817977846174064955149290862569321978468622482
|
||||
83972241375657056057490261407972968652414535100474
|
||||
82166370484403199890008895243450658541227588666881
|
||||
16427171479924442928230863465674813919123162824586
|
||||
17866458359124566529476545682848912883142607690042
|
||||
24219022671055626321111109370544217506941658960408
|
||||
07198403850962455444362981230987879927244284909188
|
||||
84580156166097919133875499200524063689912560717606
|
||||
05886116467109405077541002256983155200055935729725
|
||||
71636269561882670428252483600823257530420752963450
|
||||
73167176531330624919225119674426574742355349194934
|
||||
96983520312774506326239578318016984801869478851843
|
||||
85861560789112949495459501737958331952853208805511
|
||||
12540698747158523863050715693290963295227443043557
|
||||
66896648950445244523161731856403098711121722383113
|
||||
62229893423380308135336276614282806444486645238749
|
||||
30358907296290491560440772390713810515859307960866
|
||||
70172427121883998797908792274921901699720888093776
|
||||
65727333001053367881220235421809751254540594752243
|
||||
52584907711670556013604839586446706324415722155397
|
||||
53697817977846174064955149290862569321978468622482
|
||||
83972241375657056057490261407972968652414535100474
|
||||
82166370484403199890008895243450658541227588666881
|
||||
16427171479924442928230863465674813919123162824586
|
||||
17866458359124566529476545682848912883142607690042
|
||||
24219022671055626321111109370544217506941658960408
|
||||
07198403850962455444362981230987879927244284909188
|
||||
84580156166097919133875499200524063689912560717606
|
||||
05886116467109405077541002256983155200055935729725
|
||||
71636269561882670428252483600823257530420752963450
|
||||
|
||||
Find the thirteen adjacent digits in the 1000-digit number that have the
|
||||
greatest product. What is the value of this product?
|
||||
"""
|
||||
|
||||
import sys
|
||||
|
||||
N = """73167176531330624919225119674426574742355349194934\
|
||||
@ -53,12 +56,18 @@ N = """73167176531330624919225119674426574742355349194934\
|
||||
|
||||
|
||||
def solution(n: str = N) -> int:
|
||||
"""Find the thirteen adjacent digits in the 1000-digit number n that have
|
||||
"""
|
||||
Find the thirteen adjacent digits in the 1000-digit number n that have
|
||||
the greatest product and returns it.
|
||||
|
||||
>>> solution(N)
|
||||
23514624000
|
||||
>>> solution("13978431290823798458352374")
|
||||
609638400
|
||||
>>> solution("13978431295823798458352374")
|
||||
2612736000
|
||||
>>> solution("1397843129582379841238352374")
|
||||
209018880
|
||||
"""
|
||||
|
||||
largest_product = -sys.maxsize - 1
|
||||
for i in range(len(n) - 12):
|
||||
product = 1
|
||||
@ -70,4 +79,4 @@ def solution(n: str = N) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(N))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,34 +1,35 @@
|
||||
"""
|
||||
Problem 8: https://projecteuler.net/problem=8
|
||||
Project Euler Problem 8: https://projecteuler.net/problem=8
|
||||
|
||||
Largest product in a series
|
||||
|
||||
The four adjacent digits in the 1000-digit number that have the greatest
|
||||
product are 9 × 9 × 8 × 9 = 5832.
|
||||
|
||||
73167176531330624919225119674426574742355349194934
|
||||
96983520312774506326239578318016984801869478851843
|
||||
85861560789112949495459501737958331952853208805511
|
||||
12540698747158523863050715693290963295227443043557
|
||||
66896648950445244523161731856403098711121722383113
|
||||
62229893423380308135336276614282806444486645238749
|
||||
30358907296290491560440772390713810515859307960866
|
||||
70172427121883998797908792274921901699720888093776
|
||||
65727333001053367881220235421809751254540594752243
|
||||
52584907711670556013604839586446706324415722155397
|
||||
53697817977846174064955149290862569321978468622482
|
||||
83972241375657056057490261407972968652414535100474
|
||||
82166370484403199890008895243450658541227588666881
|
||||
16427171479924442928230863465674813919123162824586
|
||||
17866458359124566529476545682848912883142607690042
|
||||
24219022671055626321111109370544217506941658960408
|
||||
07198403850962455444362981230987879927244284909188
|
||||
84580156166097919133875499200524063689912560717606
|
||||
05886116467109405077541002256983155200055935729725
|
||||
71636269561882670428252483600823257530420752963450
|
||||
73167176531330624919225119674426574742355349194934
|
||||
96983520312774506326239578318016984801869478851843
|
||||
85861560789112949495459501737958331952853208805511
|
||||
12540698747158523863050715693290963295227443043557
|
||||
66896648950445244523161731856403098711121722383113
|
||||
62229893423380308135336276614282806444486645238749
|
||||
30358907296290491560440772390713810515859307960866
|
||||
70172427121883998797908792274921901699720888093776
|
||||
65727333001053367881220235421809751254540594752243
|
||||
52584907711670556013604839586446706324415722155397
|
||||
53697817977846174064955149290862569321978468622482
|
||||
83972241375657056057490261407972968652414535100474
|
||||
82166370484403199890008895243450658541227588666881
|
||||
16427171479924442928230863465674813919123162824586
|
||||
17866458359124566529476545682848912883142607690042
|
||||
24219022671055626321111109370544217506941658960408
|
||||
07198403850962455444362981230987879927244284909188
|
||||
84580156166097919133875499200524063689912560717606
|
||||
05886116467109405077541002256983155200055935729725
|
||||
71636269561882670428252483600823257530420752963450
|
||||
|
||||
Find the thirteen adjacent digits in the 1000-digit number that have the
|
||||
greatest product. What is the value of this product?
|
||||
"""
|
||||
|
||||
from functools import reduce
|
||||
|
||||
N = (
|
||||
@ -56,12 +57,18 @@ N = (
|
||||
|
||||
|
||||
def solution(n: str = N) -> int:
|
||||
"""Find the thirteen adjacent digits in the 1000-digit number n that have
|
||||
"""
|
||||
Find the thirteen adjacent digits in the 1000-digit number n that have
|
||||
the greatest product and returns it.
|
||||
|
||||
>>> solution(N)
|
||||
23514624000
|
||||
>>> solution("13978431290823798458352374")
|
||||
609638400
|
||||
>>> solution("13978431295823798458352374")
|
||||
2612736000
|
||||
>>> solution("1397843129582379841238352374")
|
||||
209018880
|
||||
"""
|
||||
|
||||
return max(
|
||||
[
|
||||
reduce(lambda x, y: int(x) * int(y), n[i : i + 13])
|
||||
@ -71,4 +78,4 @@ def solution(n: str = N) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(str(N)))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,29 +1,31 @@
|
||||
"""
|
||||
Problem 8: https://projecteuler.net/problem=8
|
||||
Project Euler Problem 8: https://projecteuler.net/problem=8
|
||||
|
||||
Largest product in a series
|
||||
|
||||
The four adjacent digits in the 1000-digit number that have the greatest
|
||||
product are 9 × 9 × 8 × 9 = 5832.
|
||||
|
||||
73167176531330624919225119674426574742355349194934
|
||||
96983520312774506326239578318016984801869478851843
|
||||
85861560789112949495459501737958331952853208805511
|
||||
12540698747158523863050715693290963295227443043557
|
||||
66896648950445244523161731856403098711121722383113
|
||||
62229893423380308135336276614282806444486645238749
|
||||
30358907296290491560440772390713810515859307960866
|
||||
70172427121883998797908792274921901699720888093776
|
||||
65727333001053367881220235421809751254540594752243
|
||||
52584907711670556013604839586446706324415722155397
|
||||
53697817977846174064955149290862569321978468622482
|
||||
83972241375657056057490261407972968652414535100474
|
||||
82166370484403199890008895243450658541227588666881
|
||||
16427171479924442928230863465674813919123162824586
|
||||
17866458359124566529476545682848912883142607690042
|
||||
24219022671055626321111109370544217506941658960408
|
||||
07198403850962455444362981230987879927244284909188
|
||||
84580156166097919133875499200524063689912560717606
|
||||
05886116467109405077541002256983155200055935729725
|
||||
71636269561882670428252483600823257530420752963450
|
||||
73167176531330624919225119674426574742355349194934
|
||||
96983520312774506326239578318016984801869478851843
|
||||
85861560789112949495459501737958331952853208805511
|
||||
12540698747158523863050715693290963295227443043557
|
||||
66896648950445244523161731856403098711121722383113
|
||||
62229893423380308135336276614282806444486645238749
|
||||
30358907296290491560440772390713810515859307960866
|
||||
70172427121883998797908792274921901699720888093776
|
||||
65727333001053367881220235421809751254540594752243
|
||||
52584907711670556013604839586446706324415722155397
|
||||
53697817977846174064955149290862569321978468622482
|
||||
83972241375657056057490261407972968652414535100474
|
||||
82166370484403199890008895243450658541227588666881
|
||||
16427171479924442928230863465674813919123162824586
|
||||
17866458359124566529476545682848912883142607690042
|
||||
24219022671055626321111109370544217506941658960408
|
||||
07198403850962455444362981230987879927244284909188
|
||||
84580156166097919133875499200524063689912560717606
|
||||
05886116467109405077541002256983155200055935729725
|
||||
71636269561882670428252483600823257530420752963450
|
||||
|
||||
Find the thirteen adjacent digits in the 1000-digit number that have the
|
||||
greatest product. What is the value of this product?
|
||||
@ -53,13 +55,15 @@ N = """73167176531330624919225119674426574742355349194934\
|
||||
|
||||
|
||||
def str_eval(s: str) -> int:
|
||||
"""Returns product of digits in given string n
|
||||
"""
|
||||
Returns product of digits in given string n
|
||||
|
||||
>>> str_eval("987654321")
|
||||
362880
|
||||
>>> str_eval("22222222")
|
||||
256
|
||||
"""
|
||||
|
||||
product = 1
|
||||
for digit in s:
|
||||
product *= int(digit)
|
||||
@ -67,12 +71,11 @@ def str_eval(s: str) -> int:
|
||||
|
||||
|
||||
def solution(n: str = N) -> int:
|
||||
"""Find the thirteen adjacent digits in the 1000-digit number n that have
|
||||
the greatest product and returns it.
|
||||
|
||||
>>> solution(N)
|
||||
23514624000
|
||||
"""
|
||||
Find the thirteen adjacent digits in the 1000-digit number n that have
|
||||
the greatest product and returns it.
|
||||
"""
|
||||
|
||||
largest_product = -sys.maxsize - 1
|
||||
substr = n[:13]
|
||||
cur_index = 13
|
||||
@ -88,4 +91,4 @@ def solution(n: str = N) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(N))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,26 +1,35 @@
|
||||
"""
|
||||
Problem 9: https://projecteuler.net/problem=9
|
||||
Project Euler Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
Special Pythagorean triplet
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
|
||||
a^2 + b^2 = c^2
|
||||
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
Find the product a*b*c.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Pythagorean_triple
|
||||
"""
|
||||
|
||||
|
||||
def solution() -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution()
|
||||
# 31875000
|
||||
"""
|
||||
|
||||
for a in range(300):
|
||||
for b in range(400):
|
||||
for c in range(500):
|
||||
@ -32,16 +41,17 @@ def solution() -> int:
|
||||
|
||||
def solution_fast() -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution_fast()
|
||||
# 31875000
|
||||
"""
|
||||
|
||||
for a in range(300):
|
||||
for b in range(400):
|
||||
c = 1000 - a - b
|
||||
@ -66,4 +76,4 @@ def benchmark() -> None:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark()
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,30 +1,40 @@
|
||||
"""
|
||||
Problem 9: https://projecteuler.net/problem=9
|
||||
Project Euler Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
Special Pythagorean triplet
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
|
||||
a^2 + b^2 = c^2
|
||||
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
Find the product a*b*c.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Pythagorean_triple
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""
|
||||
Return the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = n
|
||||
Return the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = n
|
||||
|
||||
>>> solution(1000)
|
||||
31875000
|
||||
>>> solution(36)
|
||||
1620
|
||||
>>> solution(126)
|
||||
66780
|
||||
"""
|
||||
|
||||
product = -1
|
||||
candidate = 0
|
||||
for a in range(1, n // 3):
|
||||
"""Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c"""
|
||||
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
|
||||
b = (n * n - 2 * a * n) // (2 * n - 2 * a)
|
||||
c = n - a - b
|
||||
if c * c == (a * a + b * b):
|
||||
@ -35,4 +45,4 @@ def solution(n: int = 1000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,5 +1,7 @@
|
||||
"""
|
||||
Problem 9: https://projecteuler.net/problem=9
|
||||
Project Euler Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
Special Pythagorean triplet
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
|
||||
@ -8,22 +10,25 @@ A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
Find the product a*b*c.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Pythagorean_triple
|
||||
"""
|
||||
|
||||
|
||||
def solution() -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
|
||||
1. a**2 + b**2 = c**2
|
||||
2. a + b + c = 1000
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a**2 + b**2 = c**2
|
||||
2. a + b + c = 1000
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution()
|
||||
# 31875000
|
||||
"""
|
||||
|
||||
return [
|
||||
a * b * (1000 - a - b)
|
||||
for a in range(1, 999)
|
||||
@ -33,4 +38,4 @@ def solution() -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution())
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,16 +1,23 @@
|
||||
"""
|
||||
https://projecteuler.net/problem=10
|
||||
Project Euler Problem 10: https://projecteuler.net/problem=10
|
||||
|
||||
Summation of primes
|
||||
|
||||
Problem Statement:
|
||||
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
||||
|
||||
Find the sum of all the primes below two million.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number
|
||||
"""
|
||||
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def is_prime(n: int) -> bool:
|
||||
"""Returns boolean representing primality of given number num.
|
||||
"""
|
||||
Returns boolean representing primality of given number num.
|
||||
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> is_prime(3)
|
||||
@ -20,6 +27,7 @@ def is_prime(n: int) -> bool:
|
||||
>>> is_prime(2999)
|
||||
True
|
||||
"""
|
||||
|
||||
for i in range(2, int(sqrt(n)) + 1):
|
||||
if n % i == 0:
|
||||
return False
|
||||
@ -28,11 +36,9 @@ def is_prime(n: int) -> bool:
|
||||
|
||||
|
||||
def solution(n: int = 2000000) -> int:
|
||||
"""Returns the sum of all the primes below n.
|
||||
"""
|
||||
Returns the sum of all the primes below n.
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution(2000000)
|
||||
# 142913828922
|
||||
>>> solution(1000)
|
||||
76127
|
||||
>>> solution(5000)
|
||||
@ -42,6 +48,7 @@ def solution(n: int = 2000000) -> int:
|
||||
>>> solution(7)
|
||||
10
|
||||
"""
|
||||
|
||||
if n > 2:
|
||||
sum_of_primes = 2
|
||||
else:
|
||||
@ -55,4 +62,4 @@ def solution(n: int = 2000000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,10 +1,14 @@
|
||||
"""
|
||||
https://projecteuler.net/problem=10
|
||||
Project Euler Problem 10: https://projecteuler.net/problem=10
|
||||
|
||||
Summation of primes
|
||||
|
||||
Problem Statement:
|
||||
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
||||
|
||||
Find the sum of all the primes below two million.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number
|
||||
"""
|
||||
import math
|
||||
from itertools import takewhile
|
||||
@ -12,7 +16,9 @@ from typing import Iterator
|
||||
|
||||
|
||||
def is_prime(number: int) -> bool:
|
||||
"""Returns boolean representing primality of given number num.
|
||||
"""
|
||||
Returns boolean representing primality of given number num.
|
||||
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> is_prime(3)
|
||||
@ -22,12 +28,17 @@ def is_prime(number: int) -> bool:
|
||||
>>> is_prime(2999)
|
||||
True
|
||||
"""
|
||||
|
||||
if number % 2 == 0 and number > 2:
|
||||
return False
|
||||
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))
|
||||
|
||||
|
||||
def prime_generator() -> Iterator[int]:
|
||||
"""
|
||||
Generate a list sequence of prime numbers
|
||||
"""
|
||||
|
||||
num = 2
|
||||
while True:
|
||||
if is_prime(num):
|
||||
@ -36,11 +47,9 @@ def prime_generator() -> Iterator[int]:
|
||||
|
||||
|
||||
def solution(n: int = 2000000) -> int:
|
||||
"""Returns the sum of all the primes below n.
|
||||
"""
|
||||
Returns the sum of all the primes below n.
|
||||
|
||||
# The code below has been commented due to slow execution affecting Travis.
|
||||
# >>> solution(2000000)
|
||||
# 142913828922
|
||||
>>> solution(1000)
|
||||
76127
|
||||
>>> solution(5000)
|
||||
@ -50,8 +59,9 @@ def solution(n: int = 2000000) -> int:
|
||||
>>> solution(7)
|
||||
10
|
||||
"""
|
||||
|
||||
return sum(takewhile(lambda x: x < n, prime_generator()))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
@ -1,43 +1,47 @@
|
||||
"""
|
||||
https://projecteuler.net/problem=10
|
||||
Project Euler Problem 10: https://projecteuler.net/problem=10
|
||||
|
||||
Summation of primes
|
||||
|
||||
Problem Statement:
|
||||
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
||||
|
||||
Find the sum of all the primes below two million.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Prime_number
|
||||
- https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 2000000) -> int:
|
||||
"""Returns the sum of all the primes below n using Sieve of Eratosthenes:
|
||||
"""
|
||||
Returns the sum of all the primes below n using Sieve of Eratosthenes:
|
||||
|
||||
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
The sieve of Eratosthenes is one of the most efficient ways to find all primes
|
||||
smaller than n when n is smaller than 10 million. Only for positive numbers.
|
||||
|
||||
>>> solution(2_000_000)
|
||||
142913828922
|
||||
>>> solution(1_000)
|
||||
>>> solution(1000)
|
||||
76127
|
||||
>>> solution(5_000)
|
||||
>>> solution(5000)
|
||||
1548136
|
||||
>>> solution(10_000)
|
||||
>>> solution(10000)
|
||||
5736396
|
||||
>>> solution(7)
|
||||
10
|
||||
>>> solution(7.1) # doctest: +ELLIPSIS
|
||||
>>> solution(7.1) # doctest: +ELLIPSIS
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: 'float' object cannot be interpreted as an integer
|
||||
>>> solution(-7) # doctest: +ELLIPSIS
|
||||
>>> solution(-7) # doctest: +ELLIPSIS
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: list assignment index out of range
|
||||
>>> solution("seven") # doctest: +ELLIPSIS
|
||||
>>> solution("seven") # doctest: +ELLIPSIS
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: can only concatenate str (not "int") to str
|
||||
"""
|
||||
|
||||
primality_list = [0 for i in range(n + 1)]
|
||||
primality_list[0] = 1
|
||||
primality_list[1] = 1
|
||||
@ -54,4 +58,4 @@ def solution(n: int = 2000000) -> int:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(int(input().strip())))
|
||||
print(f"{solution() = }")
|
||||
|
Loading…
Reference in New Issue
Block a user