mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add Simple Moving Average (SMA) Calculation
This commit adds a Python script for calculating the Simple Moving Average (SMA) of a time series data. The script also includes a doctest that verifies the correctness of the SMA calculations for a sample dataset. Usage: - Run the script with your own time series data and specify the window size for SMA calculations.
This commit is contained in:
parent
596d934238
commit
a045924411
59
financial/simple_moving_average.py
Normal file
59
financial/simple_moving_average.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
"""
|
||||||
|
Calculate the Simple Moving Average (SMA) for a time series data.
|
||||||
|
https://en.wikipedia.org/wiki/Moving_average
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def simple_moving_average(data: list[int], window_size: int) -> list[float | None]:
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
:param data: A list of numerical data points.
|
||||||
|
:param window_size: An integer representing the size of the SMA window.
|
||||||
|
:return: A list of SMA values with the same length as the input data.
|
||||||
|
|
||||||
|
The Simple Moving Average (SMA) is a statistical calculation used to
|
||||||
|
analyze data points by creating
|
||||||
|
a constantly updated average price over a specific time period.
|
||||||
|
In finance, SMA is often used in technical
|
||||||
|
analysis to smooth out price data and identify trends.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> sma = simple_moving_average([10, 12, 15, 13, 14, 16, 18, 17, 19, 21], 3)
|
||||||
|
>>> [round(value, 2) if value is not None else None for value in sma]
|
||||||
|
[None, None, 12.33, 13.33, 14.0, 14.33, 16.0, 17.0, 18.0, 19.0]
|
||||||
|
"""
|
||||||
|
|
||||||
|
sma: list[float | None] = []
|
||||||
|
|
||||||
|
for i in range(len(data)):
|
||||||
|
if i < window_size - 1:
|
||||||
|
sma.append(None) # SMA not available for early data points
|
||||||
|
else:
|
||||||
|
window = data[i - window_size + 1 : i + 1]
|
||||||
|
sma_value = sum(window) / window_size
|
||||||
|
sma.append(sma_value)
|
||||||
|
return sma
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
||||||
|
|
||||||
|
# Example data (replace with your own time series data)
|
||||||
|
data = [10, 12, 15, 13, 14, 16, 18, 17, 19, 21]
|
||||||
|
|
||||||
|
# Specify the window size for the SMA
|
||||||
|
window_size = 3
|
||||||
|
|
||||||
|
# Calculate the Simple Moving Average
|
||||||
|
sma_values = simple_moving_average(data, window_size)
|
||||||
|
|
||||||
|
# Print the SMA values
|
||||||
|
print("Simple Moving Average (SMA) Values:")
|
||||||
|
for i, value in enumerate(sma_values):
|
||||||
|
if value is not None:
|
||||||
|
print(f"Day {i + 1}: {value:.2f}")
|
||||||
|
else:
|
||||||
|
print(f"Day {i + 1}: Not enough data for SMA")
|
Loading…
Reference in New Issue
Block a user