mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add Project Euler 120 solution (#2887)
This commit is contained in:
parent
a56e548264
commit
a8ad2d10b4
0
project_euler/problem_120/__init__.py
Normal file
0
project_euler/problem_120/__init__.py
Normal file
32
project_euler/problem_120/sol1.py
Normal file
32
project_euler/problem_120/sol1.py
Normal file
@ -0,0 +1,32 @@
|
||||
"""
|
||||
Problem 120 Square remainders: https://projecteuler.net/problem=120
|
||||
|
||||
Description:
|
||||
|
||||
Let r be the remainder when (a−1)^n + (a+1)^n is divided by a^2.
|
||||
For example, if a = 7 and n = 3, then r = 42: 6^3 + 8^3 = 728 ≡ 42 mod 49.
|
||||
And as n varies, so too will r, but for a = 7 it turns out that r_max = 42.
|
||||
For 3 ≤ a ≤ 1000, find ∑ r_max.
|
||||
|
||||
Solution:
|
||||
|
||||
On expanding the terms, we get 2 if n is even and 2an if n is odd.
|
||||
For maximizing the value, 2an < a*a => n <= (a - 1)/2 (integer division)
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""
|
||||
Returns ∑ r_max for 3 <= a <= n as explained above
|
||||
>>> solution(10)
|
||||
300
|
||||
>>> solution(100)
|
||||
330750
|
||||
>>> solution(1000)
|
||||
333082500
|
||||
"""
|
||||
return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution())
|
Loading…
Reference in New Issue
Block a user