mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Problem 29 -- Project Euler
On this solution I used a 'set' data structure, since more efficient.
This commit is contained in:
parent
01f48e708d
commit
abe0f29b8b
34
main.py
Normal file
34
main.py
Normal file
@ -0,0 +1,34 @@
|
||||
def main():
|
||||
"""
|
||||
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
|
||||
|
||||
22=4, 23=8, 24=16, 25=32
|
||||
32=9, 33=27, 34=81, 35=243
|
||||
42=16, 43=64, 44=256, 45=1024
|
||||
52=25, 53=125, 54=625, 55=3125
|
||||
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
|
||||
|
||||
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
|
||||
|
||||
How many distinct terms are in the sequence generated by ab for 2 <= a <= 100 and 2 <= b <= 100?
|
||||
"""
|
||||
|
||||
collectPowers = set()
|
||||
|
||||
currentPow = 0
|
||||
|
||||
N = 101 # maximum limit
|
||||
|
||||
for a in range(2,N):
|
||||
|
||||
for b in range (2,N):
|
||||
|
||||
currentPow = a**b # calculates the current power
|
||||
collectPowers.add(currentPow) # adds the result to the set
|
||||
|
||||
|
||||
print "Number of terms ", len(collectPowers)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user