mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Fix mypy errors for arithmetic analysis algorithms (#4053)
This commit is contained in:
parent
2ff2ccbeec
commit
ad5108d6a4
@ -1,19 +1,14 @@
|
||||
"""
|
||||
Checks if a system of forces is in static equilibrium.
|
||||
|
||||
python/black : true
|
||||
flake8 : passed
|
||||
mypy : passed
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from numpy import array, cos, cross, radians, sin # type: ignore
|
||||
from numpy import array, cos, cross, radians, sin
|
||||
|
||||
|
||||
def polar_force(
|
||||
magnitude: float, angle: float, radian_mode: bool = False
|
||||
) -> list[float]:
|
||||
) -> List[float]:
|
||||
"""
|
||||
Resolves force along rectangular components.
|
||||
(force, angle) => (force_x, force_y)
|
||||
|
@ -1,34 +1,64 @@
|
||||
"""Lower-Upper (LU) Decomposition."""
|
||||
"""Lower-Upper (LU) Decomposition.
|
||||
|
||||
# lower–upper (LU) decomposition - https://en.wikipedia.org/wiki/LU_decomposition
|
||||
import numpy
|
||||
Reference:
|
||||
- https://en.wikipedia.org/wiki/LU_decomposition
|
||||
"""
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
from numpy import ndarray
|
||||
|
||||
|
||||
def LUDecompose(table):
|
||||
def lower_upper_decomposition(table: ndarray) -> Tuple[ndarray, ndarray]:
|
||||
"""Lower-Upper (LU) Decomposition
|
||||
|
||||
Example:
|
||||
|
||||
>>> matrix = np.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]])
|
||||
>>> outcome = lower_upper_decomposition(matrix)
|
||||
>>> outcome[0]
|
||||
array([[1. , 0. , 0. ],
|
||||
[0. , 1. , 0. ],
|
||||
[2.5, 8. , 1. ]])
|
||||
>>> outcome[1]
|
||||
array([[ 2. , -2. , 1. ],
|
||||
[ 0. , 1. , 2. ],
|
||||
[ 0. , 0. , -17.5]])
|
||||
|
||||
>>> matrix = np.array([[2, -2, 1], [0, 1, 2]])
|
||||
>>> lower_upper_decomposition(matrix)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: 'table' has to be of square shaped array but got a 2x3 array:
|
||||
[[ 2 -2 1]
|
||||
[ 0 1 2]]
|
||||
"""
|
||||
# Table that contains our data
|
||||
# Table has to be a square array so we need to check first
|
||||
rows, columns = numpy.shape(table)
|
||||
L = numpy.zeros((rows, columns))
|
||||
U = numpy.zeros((rows, columns))
|
||||
rows, columns = np.shape(table)
|
||||
if rows != columns:
|
||||
return []
|
||||
raise ValueError(
|
||||
f"'table' has to be of square shaped array but got a {rows}x{columns} "
|
||||
+ f"array:\n{table}"
|
||||
)
|
||||
lower = np.zeros((rows, columns))
|
||||
upper = np.zeros((rows, columns))
|
||||
for i in range(columns):
|
||||
for j in range(i):
|
||||
sum = 0
|
||||
total = 0
|
||||
for k in range(j):
|
||||
sum += L[i][k] * U[k][j]
|
||||
L[i][j] = (table[i][j] - sum) / U[j][j]
|
||||
L[i][i] = 1
|
||||
total += lower[i][k] * upper[k][j]
|
||||
lower[i][j] = (table[i][j] - total) / upper[j][j]
|
||||
lower[i][i] = 1
|
||||
for j in range(i, columns):
|
||||
sum1 = 0
|
||||
total = 0
|
||||
for k in range(i):
|
||||
sum1 += L[i][k] * U[k][j]
|
||||
U[i][j] = table[i][j] - sum1
|
||||
return L, U
|
||||
total += lower[i][k] * upper[k][j]
|
||||
upper[i][j] = table[i][j] - total
|
||||
return lower, upper
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
matrix = numpy.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]])
|
||||
L, U = LUDecompose(matrix)
|
||||
print(L)
|
||||
print(U)
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -1,10 +1,11 @@
|
||||
# https://www.geeksforgeeks.org/newton-forward-backward-interpolation/
|
||||
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
|
||||
# for calculating u value
|
||||
def ucal(u, p):
|
||||
def ucal(u: float, p: int) -> float:
|
||||
"""
|
||||
>>> ucal(1, 2)
|
||||
0
|
||||
@ -19,9 +20,9 @@ def ucal(u, p):
|
||||
return temp
|
||||
|
||||
|
||||
def main():
|
||||
def main() -> None:
|
||||
n = int(input("enter the numbers of values: "))
|
||||
y = []
|
||||
y: List[List[float]] = []
|
||||
for i in range(n):
|
||||
y.append([])
|
||||
for i in range(n):
|
||||
|
@ -4,11 +4,14 @@
|
||||
# quickly find a good approximation for the root of a real-valued function
|
||||
from decimal import Decimal
|
||||
from math import * # noqa: F401, F403
|
||||
from typing import Union
|
||||
|
||||
from sympy import diff
|
||||
|
||||
|
||||
def newton_raphson(func: str, a: int, precision: int = 10 ** -10) -> float:
|
||||
def newton_raphson(
|
||||
func: str, a: Union[float, Decimal], precision: float = 10 ** -10
|
||||
) -> float:
|
||||
"""Finds root from the point 'a' onwards by Newton-Raphson method
|
||||
>>> newton_raphson("sin(x)", 2)
|
||||
3.1415926536808043
|
||||
|
@ -1,28 +1,29 @@
|
||||
# Implementing Secant method in Python
|
||||
# Author: dimgrichr
|
||||
|
||||
|
||||
from math import exp
|
||||
|
||||
|
||||
def f(x):
|
||||
"""
|
||||
>>> f(5)
|
||||
39.98652410600183
|
||||
"""
|
||||
return 8 * x - 2 * exp(-x)
|
||||
|
||||
|
||||
def SecantMethod(lower_bound, upper_bound, repeats):
|
||||
"""
|
||||
>>> SecantMethod(1, 3, 2)
|
||||
0.2139409276214589
|
||||
"""
|
||||
x0 = lower_bound
|
||||
x1 = upper_bound
|
||||
for i in range(0, repeats):
|
||||
x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0))
|
||||
return x1
|
||||
|
||||
|
||||
print(f"The solution is: {SecantMethod(1, 3, 2)}")
|
||||
"""
|
||||
Implementing Secant method in Python
|
||||
Author: dimgrichr
|
||||
"""
|
||||
from math import exp
|
||||
|
||||
|
||||
def f(x: float) -> float:
|
||||
"""
|
||||
>>> f(5)
|
||||
39.98652410600183
|
||||
"""
|
||||
return 8 * x - 2 * exp(-x)
|
||||
|
||||
|
||||
def secant_method(lower_bound: float, upper_bound: float, repeats: int) -> float:
|
||||
"""
|
||||
>>> secant_method(1, 3, 2)
|
||||
0.2139409276214589
|
||||
"""
|
||||
x0 = lower_bound
|
||||
x1 = upper_bound
|
||||
for i in range(0, repeats):
|
||||
x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0))
|
||||
return x1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"Example: {secant_method(1, 3, 2) = }")
|
||||
|
Loading…
Reference in New Issue
Block a user