From ad5108d6a49155bc0a5aca498426265004b0265f Mon Sep 17 00:00:00 2001 From: Dhruv Manilawala Date: Wed, 23 Dec 2020 15:22:43 +0530 Subject: [PATCH] Fix mypy errors for arithmetic analysis algorithms (#4053) --- arithmetic_analysis/in_static_equilibrium.py | 11 +-- arithmetic_analysis/lu_decomposition.py | 70 +++++++++++++------ .../newton_forward_interpolation.py | 7 +- arithmetic_analysis/newton_raphson.py | 5 +- arithmetic_analysis/secant_method.py | 57 +++++++-------- 5 files changed, 90 insertions(+), 60 deletions(-) diff --git a/arithmetic_analysis/in_static_equilibrium.py b/arithmetic_analysis/in_static_equilibrium.py index f08b39c35..9b2892151 100644 --- a/arithmetic_analysis/in_static_equilibrium.py +++ b/arithmetic_analysis/in_static_equilibrium.py @@ -1,19 +1,14 @@ """ Checks if a system of forces is in static equilibrium. - -python/black : true -flake8 : passed -mypy : passed """ +from typing import List -from __future__ import annotations - -from numpy import array, cos, cross, radians, sin # type: ignore +from numpy import array, cos, cross, radians, sin def polar_force( magnitude: float, angle: float, radian_mode: bool = False -) -> list[float]: +) -> List[float]: """ Resolves force along rectangular components. (force, angle) => (force_x, force_y) diff --git a/arithmetic_analysis/lu_decomposition.py b/arithmetic_analysis/lu_decomposition.py index 763ba60f3..ef37d1b7b 100644 --- a/arithmetic_analysis/lu_decomposition.py +++ b/arithmetic_analysis/lu_decomposition.py @@ -1,34 +1,64 @@ -"""Lower-Upper (LU) Decomposition.""" +"""Lower-Upper (LU) Decomposition. -# lower–upper (LU) decomposition - https://en.wikipedia.org/wiki/LU_decomposition -import numpy +Reference: +- https://en.wikipedia.org/wiki/LU_decomposition +""" +from typing import Tuple + +import numpy as np +from numpy import ndarray -def LUDecompose(table): +def lower_upper_decomposition(table: ndarray) -> Tuple[ndarray, ndarray]: + """Lower-Upper (LU) Decomposition + + Example: + + >>> matrix = np.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]]) + >>> outcome = lower_upper_decomposition(matrix) + >>> outcome[0] + array([[1. , 0. , 0. ], + [0. , 1. , 0. ], + [2.5, 8. , 1. ]]) + >>> outcome[1] + array([[ 2. , -2. , 1. ], + [ 0. , 1. , 2. ], + [ 0. , 0. , -17.5]]) + + >>> matrix = np.array([[2, -2, 1], [0, 1, 2]]) + >>> lower_upper_decomposition(matrix) + Traceback (most recent call last): + ... + ValueError: 'table' has to be of square shaped array but got a 2x3 array: + [[ 2 -2 1] + [ 0 1 2]] + """ # Table that contains our data # Table has to be a square array so we need to check first - rows, columns = numpy.shape(table) - L = numpy.zeros((rows, columns)) - U = numpy.zeros((rows, columns)) + rows, columns = np.shape(table) if rows != columns: - return [] + raise ValueError( + f"'table' has to be of square shaped array but got a {rows}x{columns} " + + f"array:\n{table}" + ) + lower = np.zeros((rows, columns)) + upper = np.zeros((rows, columns)) for i in range(columns): for j in range(i): - sum = 0 + total = 0 for k in range(j): - sum += L[i][k] * U[k][j] - L[i][j] = (table[i][j] - sum) / U[j][j] - L[i][i] = 1 + total += lower[i][k] * upper[k][j] + lower[i][j] = (table[i][j] - total) / upper[j][j] + lower[i][i] = 1 for j in range(i, columns): - sum1 = 0 + total = 0 for k in range(i): - sum1 += L[i][k] * U[k][j] - U[i][j] = table[i][j] - sum1 - return L, U + total += lower[i][k] * upper[k][j] + upper[i][j] = table[i][j] - total + return lower, upper if __name__ == "__main__": - matrix = numpy.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]]) - L, U = LUDecompose(matrix) - print(L) - print(U) + import doctest + + doctest.testmod() diff --git a/arithmetic_analysis/newton_forward_interpolation.py b/arithmetic_analysis/newton_forward_interpolation.py index d32e3efbd..66cde4b73 100644 --- a/arithmetic_analysis/newton_forward_interpolation.py +++ b/arithmetic_analysis/newton_forward_interpolation.py @@ -1,10 +1,11 @@ # https://www.geeksforgeeks.org/newton-forward-backward-interpolation/ import math +from typing import List # for calculating u value -def ucal(u, p): +def ucal(u: float, p: int) -> float: """ >>> ucal(1, 2) 0 @@ -19,9 +20,9 @@ def ucal(u, p): return temp -def main(): +def main() -> None: n = int(input("enter the numbers of values: ")) - y = [] + y: List[List[float]] = [] for i in range(n): y.append([]) for i in range(n): diff --git a/arithmetic_analysis/newton_raphson.py b/arithmetic_analysis/newton_raphson.py index 948759a09..146bb0aa5 100644 --- a/arithmetic_analysis/newton_raphson.py +++ b/arithmetic_analysis/newton_raphson.py @@ -4,11 +4,14 @@ # quickly find a good approximation for the root of a real-valued function from decimal import Decimal from math import * # noqa: F401, F403 +from typing import Union from sympy import diff -def newton_raphson(func: str, a: int, precision: int = 10 ** -10) -> float: +def newton_raphson( + func: str, a: Union[float, Decimal], precision: float = 10 ** -10 +) -> float: """Finds root from the point 'a' onwards by Newton-Raphson method >>> newton_raphson("sin(x)", 2) 3.1415926536808043 diff --git a/arithmetic_analysis/secant_method.py b/arithmetic_analysis/secant_method.py index b05d44c62..7eb1dd8f5 100644 --- a/arithmetic_analysis/secant_method.py +++ b/arithmetic_analysis/secant_method.py @@ -1,28 +1,29 @@ -# Implementing Secant method in Python -# Author: dimgrichr - - -from math import exp - - -def f(x): - """ - >>> f(5) - 39.98652410600183 - """ - return 8 * x - 2 * exp(-x) - - -def SecantMethod(lower_bound, upper_bound, repeats): - """ - >>> SecantMethod(1, 3, 2) - 0.2139409276214589 - """ - x0 = lower_bound - x1 = upper_bound - for i in range(0, repeats): - x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0)) - return x1 - - -print(f"The solution is: {SecantMethod(1, 3, 2)}") +""" +Implementing Secant method in Python +Author: dimgrichr +""" +from math import exp + + +def f(x: float) -> float: + """ + >>> f(5) + 39.98652410600183 + """ + return 8 * x - 2 * exp(-x) + + +def secant_method(lower_bound: float, upper_bound: float, repeats: int) -> float: + """ + >>> secant_method(1, 3, 2) + 0.2139409276214589 + """ + x0 = lower_bound + x1 = upper_bound + for i in range(0, repeats): + x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0)) + return x1 + + +if __name__ == "__main__": + print(f"Example: {secant_method(1, 3, 2) = }")