mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Created problem_46 in project_euler (#2343)
* Create __init__.py * Add files via upload * Update sol1.py * Update sol1.py * Update project_euler/problem_46/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update project_euler/problem_46/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update sol1.py * exact Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
0bf1f22d37
commit
ae33419c12
1
project_euler/problem_46/__init__.py
Normal file
1
project_euler/problem_46/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
#
|
88
project_euler/problem_46/sol1.py
Normal file
88
project_euler/problem_46/sol1.py
Normal file
@ -0,0 +1,88 @@
|
||||
"""
|
||||
It was proposed by Christian Goldbach that every odd composite number can be
|
||||
written as the sum of a prime and twice a square.
|
||||
|
||||
9 = 7 + 2 × 12
|
||||
15 = 7 + 2 × 22
|
||||
21 = 3 + 2 × 32
|
||||
25 = 7 + 2 × 32
|
||||
27 = 19 + 2 × 22
|
||||
33 = 31 + 2 × 12
|
||||
|
||||
It turns out that the conjecture was false.
|
||||
|
||||
What is the smallest odd composite that cannot be written as the sum of a
|
||||
prime and twice a square?
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
seive = [True] * 100001
|
||||
i = 2
|
||||
while i * i <= 100000:
|
||||
if seive[i]:
|
||||
for j in range(i * i, 100001, i):
|
||||
seive[j] = False
|
||||
i += 1
|
||||
|
||||
|
||||
def is_prime(n: int) -> bool:
|
||||
"""
|
||||
Returns True if n is prime,
|
||||
False otherwise, for 2 <= n <= 100000
|
||||
>>> is_prime(87)
|
||||
False
|
||||
>>> is_prime(23)
|
||||
True
|
||||
>>> is_prime(25363)
|
||||
False
|
||||
"""
|
||||
return seive[n]
|
||||
|
||||
|
||||
odd_composites = [num for num in range(3, len(seive), 2) if not is_prime(num)]
|
||||
|
||||
|
||||
def compute_nums(n: int) -> List[int]:
|
||||
"""
|
||||
Returns a list of first n odd composite numbers which do
|
||||
not follow the conjecture.
|
||||
>>> compute_nums(1)
|
||||
[5777]
|
||||
>>> compute_nums(2)
|
||||
[5777, 5993]
|
||||
>>> compute_nums(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: n must be >= 0
|
||||
>>> compute_nums("a")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: n must be an integer
|
||||
>>> compute_nums(1.1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: n must be an integer
|
||||
|
||||
"""
|
||||
if not isinstance(n, int):
|
||||
raise ValueError("n must be an integer")
|
||||
if n <= 0:
|
||||
raise ValueError("n must be >= 0")
|
||||
|
||||
list_nums = []
|
||||
for num in range(len(odd_composites)):
|
||||
i = 0
|
||||
while 2 * i * i <= odd_composites[num]:
|
||||
rem = odd_composites[num] - 2 * i * i
|
||||
if is_prime(rem):
|
||||
break
|
||||
i += 1
|
||||
else:
|
||||
list_nums.append(odd_composites[num])
|
||||
if len(list_nums) == n:
|
||||
return list_nums
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{compute_nums(1) = }")
|
Loading…
Reference in New Issue
Block a user