mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add LeNet Implementation in PyTorch (#7070)
* add torch to requirements * add lenet architecture in pytorch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add type hints * remove file * add type hints * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update variable name * add fail test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add newline * reformatting --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
740ecfb121
commit
b2b8585e63
82
computer_vision/lenet_pytorch.py
Normal file
82
computer_vision/lenet_pytorch.py
Normal file
@ -0,0 +1,82 @@
|
||||
"""
|
||||
LeNet Network
|
||||
|
||||
Paper: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
|
||||
"""
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class LeNet(nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tanh = nn.Tanh()
|
||||
self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2)
|
||||
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=1,
|
||||
out_channels=6,
|
||||
kernel_size=(5, 5),
|
||||
stride=(1, 1),
|
||||
padding=(0, 0),
|
||||
)
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=6,
|
||||
out_channels=16,
|
||||
kernel_size=(5, 5),
|
||||
stride=(1, 1),
|
||||
padding=(0, 0),
|
||||
)
|
||||
self.conv3 = nn.Conv2d(
|
||||
in_channels=16,
|
||||
out_channels=120,
|
||||
kernel_size=(5, 5),
|
||||
stride=(1, 1),
|
||||
padding=(0, 0),
|
||||
)
|
||||
|
||||
self.linear1 = nn.Linear(120, 84)
|
||||
self.linear2 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, image_array: numpy.ndarray) -> numpy.ndarray:
|
||||
image_array = self.tanh(self.conv1(image_array))
|
||||
image_array = self.avgpool(image_array)
|
||||
image_array = self.tanh(self.conv2(image_array))
|
||||
image_array = self.avgpool(image_array)
|
||||
image_array = self.tanh(self.conv3(image_array))
|
||||
|
||||
image_array = image_array.reshape(image_array.shape[0], -1)
|
||||
image_array = self.tanh(self.linear1(image_array))
|
||||
image_array = self.linear2(image_array)
|
||||
return image_array
|
||||
|
||||
|
||||
def test_model(image_tensor: torch.tensor) -> bool:
|
||||
"""
|
||||
Test the model on an input batch of 64 images
|
||||
|
||||
Args:
|
||||
image_tensor (torch.tensor): Batch of Images for the model
|
||||
|
||||
>>> test_model(torch.randn(64, 1, 32, 32))
|
||||
True
|
||||
|
||||
"""
|
||||
try:
|
||||
model = LeNet()
|
||||
output = model(image_tensor)
|
||||
except RuntimeError:
|
||||
return False
|
||||
|
||||
return output.shape == torch.zeros([64, 10]).shape
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
random_image_1 = torch.randn(64, 1, 32, 32)
|
||||
random_image_2 = torch.randn(1, 32, 32)
|
||||
|
||||
print(f"random_image_1 Model Passed: {test_model(random_image_1)}")
|
||||
print(f"\nrandom_image_2 Model Passed: {test_model(random_image_2)}")
|
@ -17,6 +17,7 @@ statsmodels
|
||||
sympy
|
||||
tensorflow
|
||||
texttable
|
||||
torch
|
||||
tweepy
|
||||
xgboost
|
||||
yulewalker
|
||||
|
Loading…
Reference in New Issue
Block a user