mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Create gaussian_naive_bayes.py (#1861)
* Create Gaussian_Naive_Bayes.py Added Gaussian Naive Bayes algorithm in the module machine learning * Rename Gaussian_Naive_Bayes.py to gaussian_naive_bayes.py * requirements.txt: pip install xgboost Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
d2e8e6215e
commit
b64c4af296
45
machine_learning/gaussian_naive_bayes.py
Normal file
45
machine_learning/gaussian_naive_bayes.py
Normal file
@ -0,0 +1,45 @@
|
||||
# Gaussian Naive Bayes Example
|
||||
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.metrics import plot_confusion_matrix
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
"""
|
||||
Gaussian Naive Bayes Example using sklearn function.
|
||||
Iris type dataset is used to demonstrate algorithm.
|
||||
"""
|
||||
|
||||
# Load Iris dataset
|
||||
iris = load_iris()
|
||||
|
||||
# Split dataset into train and test data
|
||||
X = iris["data"] # features
|
||||
Y = iris["target"]
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size=0.3, random_state=1
|
||||
)
|
||||
|
||||
# Gaussian Naive Bayes
|
||||
NB_model = GaussianNB()
|
||||
NB_model.fit(x_train, y_train)
|
||||
|
||||
# Display Confusion Matrix
|
||||
plot_confusion_matrix(
|
||||
NB_model,
|
||||
x_test,
|
||||
y_test,
|
||||
display_labels=iris["target_names"],
|
||||
cmap="Blues",
|
||||
normalize="true",
|
||||
)
|
||||
plt.title("Normalized Confusion Matrix - IRIS Dataset")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -15,3 +15,4 @@ scikit-fuzzy
|
||||
sklearn
|
||||
sympy
|
||||
tensorflow; python_version < '3.8'
|
||||
xgboost
|
||||
|
Loading…
Reference in New Issue
Block a user