Add Jacobi Iteration Method (#5113)

* Added Jacobi Iteration Method

Added this method in arithmetic_analysis folder. This method is used to solve system of linear equations.

* Added comments

* Added reference link

* Update jacobi_iteration_method.py

* Changes for codespell test

* Update jacobi_iteration_method.py

* Update jacobi_iteration_method.py

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* updating DIRECTORY.md

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update arithmetic_analysis/jacobi_iteration_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update jacobi_iteration_method.py

* Update jacobi_iteration_method.py

* Update jacobi_iteration_method.py

* fix styles

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
Nivas Manduva 2021-11-09 20:10:57 +05:30 committed by GitHub
parent 0b8d6d70ce
commit c3d1ff0ebd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 164 additions and 0 deletions

View File

@ -4,6 +4,7 @@
* [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py)
* [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py)
* [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py)
* [Jacobi Iteration Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/jacobi_iteration_method.py)
* [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py)
* [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py)
* [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py)

View File

@ -0,0 +1,163 @@
"""
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
"""
from __future__ import annotations
import numpy as np
# Method to find solution of system of linear equations
def jacobi_iteration_method(
coefficient_matrix: np.ndarray,
constant_matrix: np.ndarray,
init_val: list,
iterations: int,
) -> list[float]:
"""
Jacobi Iteration Method:
An iterative algorithm to determine the solutions of strictly diagonally dominant
system of linear equations
4x1 + x2 + x3 = 2
x1 + 5x2 + 2x3 = -6
x1 + 2x2 + 4x3 = -4
x_init = [0.5, -0.5 , -0.5]
Examples:
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
[0.909375, -1.14375, -0.7484375]
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
received 3x3 and 2x1
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Number of initial values must be equal to number of rows in coefficient
matrix but received 2 and 3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 0
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Iterations must be at least 1
"""
rows1, cols1 = coefficient_matrix.shape
rows2, cols2 = constant_matrix.shape
if rows1 != cols1:
raise ValueError(
f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
)
if cols2 != 1:
raise ValueError(f"Constant matrix must be nx1 but received {rows2}x{cols2}")
if rows1 != rows2:
raise ValueError(
f"""Coefficient and constant matrices dimensions must be nxn and nx1 but
received {rows1}x{cols1} and {rows2}x{cols2}"""
)
if len(init_val) != rows1:
raise ValueError(
f"""Number of initial values must be equal to number of rows in coefficient
matrix but received {len(init_val)} and {rows1}"""
)
if iterations <= 0:
raise ValueError("Iterations must be at least 1")
table = np.concatenate((coefficient_matrix, constant_matrix), axis=1)
rows, cols = table.shape
strictly_diagonally_dominant(table)
# Iterates the whole matrix for given number of times
for i in range(iterations):
new_val = []
for row in range(rows):
temp = 0
for col in range(cols):
if col == row:
denom = table[row][col]
elif col == cols - 1:
val = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
temp = (temp + val) / denom
new_val.append(temp)
init_val = new_val
return [float(i) for i in new_val]
# Checks if the given matrix is strictly diagonally dominant
def strictly_diagonally_dominant(table: np.ndarray) -> bool:
"""
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
>>> strictly_diagonally_dominant(table)
True
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
>>> strictly_diagonally_dominant(table)
Traceback (most recent call last):
...
ValueError: Coefficient matrix is not strictly diagonally dominant
"""
rows, cols = table.shape
is_diagonally_dominant = True
for i in range(0, rows):
sum = 0
for j in range(0, cols - 1):
if i == j:
continue
else:
sum += table[i][j]
if table[i][i] <= sum:
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()