From cd3e8f95a018b64367e52a20ded6bce7d28a1bfa Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Mon, 6 Jul 2020 05:18:18 +0200 Subject: [PATCH] isort --profile black --recursive . (#2170) * isort --profile black --recursive . * Update codespell.yml * typo: vertices * typo: Explanation * typo: Explanation * Fix typos --- .github/workflows/autoblack.yml | 3 ++- .github/workflows/codespell.yml | 4 ++-- dynamic_programming/max_non_adjacent_sum.py | 2 +- dynamic_programming/minimum_cost_path.py | 2 +- graphs/connected_components.py | 2 +- machine_learning/k_means_clust.py | 6 +++--- 6 files changed, 10 insertions(+), 9 deletions(-) diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml index 44249f787..25a04f276 100644 --- a/.github/workflows/autoblack.yml +++ b/.github/workflows/autoblack.yml @@ -11,12 +11,13 @@ jobs: steps: - uses: actions/checkout@v1 # Use v1, NOT v2 - uses: actions/setup-python@v2 - - run: pip install black + - run: pip install black isort - run: black --check . - name: If needed, commit black changes to a new pull request if: failure() run: | black . + isort --profile black --recursive . git config --global user.name github-actions git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com' git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY diff --git a/.github/workflows/codespell.yml b/.github/workflows/codespell.yml index 30f2f34b4..3479b0218 100644 --- a/.github/workflows/codespell.yml +++ b/.github/workflows/codespell.yml @@ -13,5 +13,5 @@ jobs: SKIP="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_22/p022_names.txt" codespell -L ans,fo,hist,iff,secant,tim --skip=$SKIP --quiet-level=2 - name: Codespell comment - if: ${{ failure() }} - uses: plettich/python_codespell_action@master + if: ${{ failure() }} + uses: plettich/python_codespell_action@master diff --git a/dynamic_programming/max_non_adjacent_sum.py b/dynamic_programming/max_non_adjacent_sum.py index b9f99a226..15dd8ce66 100644 --- a/dynamic_programming/max_non_adjacent_sum.py +++ b/dynamic_programming/max_non_adjacent_sum.py @@ -1,4 +1,4 @@ -# Video Explaination: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo +# Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo from typing import List diff --git a/dynamic_programming/minimum_cost_path.py b/dynamic_programming/minimum_cost_path.py index a8d424eb2..09295a4fa 100644 --- a/dynamic_programming/minimum_cost_path.py +++ b/dynamic_programming/minimum_cost_path.py @@ -1,4 +1,4 @@ -# Youtube Explaination: https://www.youtube.com/watch?v=lBRtnuxg-gU +# Youtube Explanation: https://www.youtube.com/watch?v=lBRtnuxg-gU from typing import List diff --git a/graphs/connected_components.py b/graphs/connected_components.py index 6bcc160a9..4af7803d7 100644 --- a/graphs/connected_components.py +++ b/graphs/connected_components.py @@ -12,7 +12,7 @@ test_graph_2 = {0: [1, 2, 3], 1: [0, 3], 2: [0], 3: [0, 1], 4: [], 5: []} def dfs(graph: dict, vert: int, visited: list) -> list: """ - Use depth first search to find all vertexes + Use depth first search to find all vertices being in the same component as initial vertex >>> dfs(test_graph_1, 0, 5 * [False]) [0, 1, 3, 2] diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py index d5fa31135..9f6c65f58 100644 --- a/machine_learning/k_means_clust.py +++ b/machine_learning/k_means_clust.py @@ -250,7 +250,7 @@ def ReportGenerator( df["dummy"] = 1 numeric_cols = df.select_dtypes(np.number).columns report = ( - df.groupby(["Cluster"])[ # constract report dataframe + df.groupby(["Cluster"])[ # construct report dataframe numeric_cols ] # group by cluster number .agg( @@ -289,14 +289,14 @@ def ReportGenerator( clustersize = report[ (report["Features"] == "dummy") & (report["Type"] == "count") - ] # caclulating size of cluster(count of clientID's) + ] # calculate the size of cluster(count of clientID's) clustersize.Type = ( "ClusterSize" # rename created cluster df to match report column names ) clustersize.Features = "# of Customers" clusterproportion = pd.DataFrame( clustersize.iloc[:, 2:].values - / clustersize.iloc[:, 2:].values.sum() # caclulating proportion of cluster + / clustersize.iloc[:, 2:].values.sum() # calculating the proportion of cluster ) clusterproportion[ "Type"