Pyupgrade to Python 3.9 (#4718)

* Pyupgrade to Python 3.9

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss 2021-09-07 13:37:03 +02:00 committed by GitHub
parent 5d5831bdd0
commit cecf43d648
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
142 changed files with 523 additions and 530 deletions

View File

@ -545,7 +545,7 @@
## Other
* [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py)
* [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py)
* [DavisPutnamLogemannLoveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisputnamlogemannloveland.py)
* [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py)
* [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py)
* [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py)
* [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py)
@ -860,6 +860,7 @@
* [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py)
* [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py)
* [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py)
* [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py)
* [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py)
* [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py)
* [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py)

View File

@ -1,14 +1,14 @@
"""
Checks if a system of forces is in static equilibrium.
"""
from typing import List
from __future__ import annotations
from numpy import array, cos, cross, ndarray, radians, sin
def polar_force(
magnitude: float, angle: float, radian_mode: bool = False
) -> List[float]:
) -> list[float]:
"""
Resolves force along rectangular components.
(force, angle) => (force_x, force_y)

View File

@ -3,12 +3,12 @@
Reference:
- https://en.wikipedia.org/wiki/LU_decomposition
"""
from typing import Tuple
from __future__ import annotations
import numpy as np
def lower_upper_decomposition(table: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""Lower-Upper (LU) Decomposition
Example:

View File

@ -1,7 +1,7 @@
# https://www.geeksforgeeks.org/newton-forward-backward-interpolation/
from __future__ import annotations
import math
from typing import List
# for calculating u value
@ -22,7 +22,7 @@ def ucal(u: float, p: int) -> float:
def main() -> None:
n = int(input("enter the numbers of values: "))
y: List[List[float]] = []
y: list[list[float]] = []
for i in range(n):
y.append([])
for i in range(n):

View File

@ -2,15 +2,16 @@
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F401, F403
from typing import Union
from sympy import diff
def newton_raphson(
func: str, a: Union[float, Decimal], precision: float = 10 ** -10
func: str, a: float | Decimal, precision: float = 10 ** -10
) -> float:
"""Finds root from the point 'a' onwards by Newton-Raphson method
>>> newton_raphson("sin(x)", 2)

View File

@ -3,16 +3,16 @@
numbers out of 1 ... n. We use backtracking to solve this problem.
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!)))
"""
from typing import List
from __future__ import annotations
def generate_all_combinations(n: int, k: int) -> List[List[int]]:
def generate_all_combinations(n: int, k: int) -> list[list[int]]:
"""
>>> generate_all_combinations(n=4, k=2)
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
"""
result: List[List[int]] = []
result: list[list[int]] = []
create_all_state(1, n, k, [], result)
return result
@ -21,8 +21,8 @@ def create_all_state(
increment: int,
total_number: int,
level: int,
current_list: List[int],
total_list: List[List[int]],
current_list: list[int],
total_list: list[list[int]],
) -> None:
if level == 0:
total_list.append(current_list[:])
@ -34,7 +34,7 @@ def create_all_state(
current_list.pop()
def print_all_state(total_list: List[List[int]]) -> None:
def print_all_state(total_list: list[list[int]]) -> None:
for i in total_list:
print(*i)

View File

@ -5,18 +5,18 @@
Time complexity: O(n! * n),
where n denotes the length of the given sequence.
"""
from typing import List, Union
from __future__ import annotations
def generate_all_permutations(sequence: List[Union[int, str]]) -> None:
def generate_all_permutations(sequence: list[int | str]) -> None:
create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))])
def create_state_space_tree(
sequence: List[Union[int, str]],
current_sequence: List[Union[int, str]],
sequence: list[int | str],
current_sequence: list[int | str],
index: int,
index_used: List[int],
index_used: list[int],
) -> None:
"""
Creates a state space tree to iterate through each branch using DFS.
@ -44,8 +44,8 @@ print("Enter the elements")
sequence = list(map(int, input().split()))
"""
sequence: List[Union[int, str]] = [3, 1, 2, 4]
sequence: list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
sequence_2: List[Union[int, str]] = ["A", "B", "C"]
sequence_2: list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_2)

View File

@ -5,15 +5,17 @@ of the given sequence. We use backtracking to solve this problem.
Time complexity: O(2^n),
where n denotes the length of the given sequence.
"""
from typing import Any, List
from __future__ import annotations
from typing import Any
def generate_all_subsequences(sequence: List[Any]) -> None:
def generate_all_subsequences(sequence: list[Any]) -> None:
create_state_space_tree(sequence, [], 0)
def create_state_space_tree(
sequence: List[Any], current_subsequence: List[Any], index: int
sequence: list[Any], current_subsequence: list[Any], index: int
) -> None:
"""
Creates a state space tree to iterate through each branch using DFS.
@ -32,7 +34,7 @@ def create_state_space_tree(
if __name__ == "__main__":
seq: List[Any] = [3, 1, 2, 4]
seq: list[Any] = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()

View File

@ -5,11 +5,10 @@
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
"""
from typing import List
def valid_coloring(
neighbours: List[int], colored_vertices: List[int], color: int
neighbours: list[int], colored_vertices: list[int], color: int
) -> bool:
"""
For each neighbour check if coloring constraint is satisfied
@ -35,7 +34,7 @@ def valid_coloring(
def util_color(
graph: List[List[int]], max_colors: int, colored_vertices: List[int], index: int
graph: list[list[int]], max_colors: int, colored_vertices: list[int], index: int
) -> bool:
"""
Pseudo-Code
@ -86,7 +85,7 @@ def util_color(
return False
def color(graph: List[List[int]], max_colors: int) -> List[int]:
def color(graph: list[list[int]], max_colors: int) -> list[int]:
"""
Wrapper function to call subroutine called util_color
which will either return True or False.

View File

@ -6,11 +6,10 @@
Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path
"""
from typing import List
def valid_connection(
graph: List[List[int]], next_ver: int, curr_ind: int, path: List[int]
graph: list[list[int]], next_ver: int, curr_ind: int, path: list[int]
) -> bool:
"""
Checks whether it is possible to add next into path by validating 2 statements
@ -47,7 +46,7 @@ def valid_connection(
return not any(vertex == next_ver for vertex in path)
def util_hamilton_cycle(graph: List[List[int]], path: List[int], curr_ind: int) -> bool:
def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int) -> bool:
"""
Pseudo-Code
Base Case:
@ -108,7 +107,7 @@ def util_hamilton_cycle(graph: List[List[int]], path: List[int], curr_ind: int)
return False
def hamilton_cycle(graph: List[List[int]], start_index: int = 0) -> List[int]:
def hamilton_cycle(graph: list[list[int]], start_index: int = 0) -> list[int]:
r"""
Wrapper function to call subroutine called util_hamilton_cycle,
which will either return array of vertices indicating hamiltonian cycle

View File

@ -1,9 +1,9 @@
# Knight Tour Intro: https://www.youtube.com/watch?v=ab_dY3dZFHM
from typing import List, Tuple
from __future__ import annotations
def get_valid_pos(position: Tuple[int, int], n: int) -> List[Tuple[int, int]]:
def get_valid_pos(position: tuple[int, int], n: int) -> list[tuple[int, int]]:
"""
Find all the valid positions a knight can move to from the current position.
@ -32,7 +32,7 @@ def get_valid_pos(position: Tuple[int, int], n: int) -> List[Tuple[int, int]]:
return permissible_positions
def is_complete(board: List[List[int]]) -> bool:
def is_complete(board: list[list[int]]) -> bool:
"""
Check if the board (matrix) has been completely filled with non-zero values.
@ -47,7 +47,7 @@ def is_complete(board: List[List[int]]) -> bool:
def open_knight_tour_helper(
board: List[List[int]], pos: Tuple[int, int], curr: int
board: list[list[int]], pos: tuple[int, int], curr: int
) -> bool:
"""
Helper function to solve knight tour problem.
@ -68,7 +68,7 @@ def open_knight_tour_helper(
return False
def open_knight_tour(n: int) -> List[List[int]]:
def open_knight_tour(n: int) -> list[list[int]]:
"""
Find the solution for the knight tour problem for a board of size n. Raises
ValueError if the tour cannot be performed for the given size.

View File

@ -7,12 +7,13 @@ if move is of maximizer return true else false
leaves of game tree is stored in scores[]
height is maximum height of Game tree
"""
from __future__ import annotations
import math
from typing import List
def minimax(
depth: int, node_index: int, is_max: bool, scores: List[int], height: float
depth: int, node_index: int, is_max: bool, scores: list[int], height: float
) -> int:
"""
>>> import math

View File

@ -7,12 +7,12 @@
diagonal lines.
"""
from typing import List
from __future__ import annotations
solution = []
def isSafe(board: List[List[int]], row: int, column: int) -> bool:
def isSafe(board: list[list[int]], row: int, column: int) -> bool:
"""
This function returns a boolean value True if it is safe to place a queen there
considering the current state of the board.
@ -40,7 +40,7 @@ def isSafe(board: List[List[int]], row: int, column: int) -> bool:
return True
def solve(board: List[List[int]], row: int) -> bool:
def solve(board: list[list[int]], row: int) -> bool:
"""
It creates a state space tree and calls the safe function until it receives a
False Boolean and terminates that branch and backtracks to the next
@ -70,7 +70,7 @@ def solve(board: List[List[int]], row: int) -> bool:
return False
def printboard(board: List[List[int]]) -> None:
def printboard(board: list[list[int]]) -> None:
"""
Prints the boards that have a successful combination.
"""

View File

@ -75,14 +75,14 @@ Applying this two formulas we can check if a queen in some position is being att
for another one or vice versa.
"""
from typing import List
from __future__ import annotations
def depth_first_search(
possible_board: List[int],
diagonal_right_collisions: List[int],
diagonal_left_collisions: List[int],
boards: List[List[str]],
possible_board: list[int],
diagonal_right_collisions: list[int],
diagonal_left_collisions: list[int],
boards: list[list[str]],
n: int,
) -> None:
"""
@ -139,7 +139,7 @@ def depth_first_search(
def n_queens_solution(n: int) -> None:
boards: List[List[str]] = []
boards: list[list[str]] = []
depth_first_search([], [], [], boards, n)
# Print all the boards

View File

@ -1,7 +1,7 @@
from typing import List
from __future__ import annotations
def solve_maze(maze: List[List[int]]) -> bool:
def solve_maze(maze: list[list[int]]) -> bool:
"""
This method solves the "rat in maze" problem.
In this problem we have some n by n matrix, a start point and an end point.
@ -70,7 +70,7 @@ def solve_maze(maze: List[List[int]]) -> bool:
return solved
def run_maze(maze: List[List[int]], i: int, j: int, solutions: List[List[int]]) -> bool:
def run_maze(maze: list[list[int]], i: int, j: int, solutions: list[list[int]]) -> bool:
"""
This method is recursive starting from (i, j) and going in one of four directions:
up, down, left, right.

View File

@ -9,9 +9,9 @@ function on the next column to see if it returns True. if yes, we
have solved the puzzle. else, we backtrack and place another number
in that cell and repeat this process.
"""
from typing import List, Optional, Tuple
from __future__ import annotations
Matrix = List[List[int]]
Matrix = list[list[int]]
# assigning initial values to the grid
initial_grid: Matrix = [
@ -59,7 +59,7 @@ def is_safe(grid: Matrix, row: int, column: int, n: int) -> bool:
return True
def find_empty_location(grid: Matrix) -> Optional[Tuple[int, int]]:
def find_empty_location(grid: Matrix) -> tuple[int, int] | None:
"""
This function finds an empty location so that we can assign a number
for that particular row and column.
@ -71,7 +71,7 @@ def find_empty_location(grid: Matrix) -> Optional[Tuple[int, int]]:
return None
def sudoku(grid: Matrix) -> Optional[Matrix]:
def sudoku(grid: Matrix) -> Matrix | None:
"""
Takes a partially filled-in grid and attempts to assign values to
all unassigned locations in such a way to meet the requirements

View File

@ -6,12 +6,12 @@
Summation of the chosen numbers must be equal to given number M and one number
can be used only once.
"""
from typing import List
from __future__ import annotations
def generate_sum_of_subsets_soln(nums: List[int], max_sum: int) -> List[List[int]]:
result: List[List[int]] = []
path: List[int] = []
def generate_sum_of_subsets_soln(nums: list[int], max_sum: int) -> list[list[int]]:
result: list[list[int]] = []
path: list[int] = []
num_index = 0
remaining_nums_sum = sum(nums)
create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum)
@ -19,11 +19,11 @@ def generate_sum_of_subsets_soln(nums: List[int], max_sum: int) -> List[List[int
def create_state_space_tree(
nums: List[int],
nums: list[int],
max_sum: int,
num_index: int,
path: List[int],
result: List[List[int]],
path: list[int],
result: list[list[int]],
remaining_nums_sum: int,
) -> None:
"""

View File

@ -11,11 +11,11 @@ Algorithm :
1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
2. Take n = ra*by + rb*ax
"""
from typing import Tuple
from __future__ import annotations
# Extended Euclid
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
def extended_euclid(a: int, b: int) -> tuple[int, int]:
"""
>>> extended_euclid(10, 6)
(-1, 2)

View File

@ -1,7 +1,7 @@
from typing import Tuple
from __future__ import annotations
def diophantine(a: int, b: int, c: int) -> Tuple[float, float]:
def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
"""
Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
diophantine equation a*x + b*y = c has a solution (where x and y are integers)
@ -95,7 +95,7 @@ def greatest_common_divisor(a: int, b: int) -> int:
return b
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
"""
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers
x and y, then d = gcd(a,b)

View File

@ -1,4 +1,4 @@
from typing import Tuple
from __future__ import annotations
def modular_division(a: int, b: int, n: int) -> int:
@ -73,7 +73,7 @@ def modular_division2(a: int, b: int, n: int) -> int:
return x
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
"""
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x
and y, then d = gcd(a,b)
@ -101,7 +101,7 @@ def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
return (d, x, y)
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
def extended_euclid(a: int, b: int) -> tuple[int, int]:
"""
Extended Euclid
>>> extended_euclid(10, 6)

View File

@ -1,4 +1,4 @@
from typing import List
from __future__ import annotations
def compare_string(string1: str, string2: str) -> str:
@ -22,7 +22,7 @@ def compare_string(string1: str, string2: str) -> str:
return "".join(l1)
def check(binary: List[str]) -> List[str]:
def check(binary: list[str]) -> list[str]:
"""
>>> check(['0.00.01.5'])
['0.00.01.5']
@ -46,7 +46,7 @@ def check(binary: List[str]) -> List[str]:
binary = list(set(temp))
def decimal_to_binary(no_of_variable: int, minterms: List[float]) -> List[str]:
def decimal_to_binary(no_of_variable: int, minterms: list[float]) -> list[str]:
"""
>>> decimal_to_binary(3,[1.5])
['0.00.01.5']
@ -82,7 +82,7 @@ def is_for_table(string1: str, string2: str, count: int) -> bool:
return False
def selection(chart: List[List[int]], prime_implicants: List[str]) -> List[str]:
def selection(chart: list[list[int]], prime_implicants: list[str]) -> list[str]:
"""
>>> selection([[1]],['0.00.01.5'])
['0.00.01.5']
@ -130,8 +130,8 @@ def selection(chart: List[List[int]], prime_implicants: List[str]) -> List[str]:
def prime_implicant_chart(
prime_implicants: List[str], binary: List[str]
) -> List[List[int]]:
prime_implicants: list[str], binary: list[str]
) -> list[list[int]]:
"""
>>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5'])
[[1]]

View File

@ -2,11 +2,8 @@
Conway's Game of Life implemented in Python.
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
"""
from __future__ import annotations
from typing import List
from PIL import Image
# Define glider example
@ -25,7 +22,7 @@ GLIDER = [
BLINKER = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def new_generation(cells: List[List[int]]) -> List[List[int]]:
def new_generation(cells: list[list[int]]) -> list[list[int]]:
"""
Generates the next generation for a given state of Conway's Game of Life.
>>> new_generation(BLINKER)

View File

@ -1,8 +1,9 @@
from __future__ import annotations
from string import ascii_letters
from typing import Dict, Optional
def encrypt(input_string: str, key: int, alphabet: Optional[str] = None) -> str:
def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
encrypt
=======
@ -80,7 +81,7 @@ def encrypt(input_string: str, key: int, alphabet: Optional[str] = None) -> str:
return result
def decrypt(input_string: str, key: int, alphabet: Optional[str] = None) -> str:
def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
decrypt
=======
@ -145,7 +146,7 @@ def decrypt(input_string: str, key: int, alphabet: Optional[str] = None) -> str:
return encrypt(input_string, key, alphabet)
def brute_force(input_string: str, alphabet: Optional[str] = None) -> Dict[int, str]:
def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
"""
brute_force
===========

View File

@ -1,12 +1,11 @@
#!/usr/bin/env python3
from typing import Optional
from __future__ import annotations
def decrypt_caesar_with_chi_squared(
ciphertext: str,
cipher_alphabet: Optional[list[str]] = None,
frequencies_dict: Optional[dict[str, float]] = None,
cipher_alphabet: list[str] | None = None,
frequencies_dict: dict[str, float] | None = None,
case_sensetive: bool = False,
) -> tuple[int, float, str]:
"""

View File

@ -1,7 +1,7 @@
from typing import Optional
from __future__ import annotations
def find_primitive(n: int) -> Optional[int]:
def find_primitive(n: int) -> int | None:
for r in range(1, n):
li = []
for x in range(n - 1):

View File

@ -1,6 +1,7 @@
from __future__ import annotations
import random
import string
from typing import Optional
class ShuffledShiftCipher:
@ -27,7 +28,7 @@ class ShuffledShiftCipher:
cip2 = ShuffledShiftCipher()
"""
def __init__(self, passcode: Optional[str] = None) -> None:
def __init__(self, passcode: str | None = None) -> None:
"""
Initializes a cipher object with a passcode as it's entity
Note: No new passcode is generated if user provides a passcode

View File

@ -30,7 +30,7 @@ def parse_file(file_path):
if not c:
break
chars[c] = chars[c] + 1 if c in chars.keys() else 1
return sorted([Letter(c, f) for c, f in chars.items()], key=lambda l: l.freq)
return sorted((Letter(c, f) for c, f in chars.items()), key=lambda l: l.freq)
def build_tree(letters):

View File

@ -20,7 +20,7 @@ def molarity_to_normality(nfactor: int, moles: float, volume: float) -> float:
>>> molarity_to_normality(4, 11.4, 5.7)
8
"""
return round((float(moles / volume) * nfactor))
return round(float(moles / volume) * nfactor)
def moles_to_pressure(volume: float, moles: float, temperature: float) -> float:

View File

@ -1,8 +1,9 @@
"""
Convert International System of Units (SI) and Binary prefixes
"""
from __future__ import annotations
from enum import Enum
from typing import Union
class SI_Unit(Enum):
@ -41,8 +42,8 @@ class Binary_Unit(Enum):
def convert_si_prefix(
known_amount: float,
known_prefix: Union[str, SI_Unit],
unknown_prefix: Union[str, SI_Unit],
known_prefix: str | SI_Unit,
unknown_prefix: str | SI_Unit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Binary_prefix
@ -70,8 +71,8 @@ def convert_si_prefix(
def convert_binary_prefix(
known_amount: float,
known_prefix: Union[str, Binary_Unit],
unknown_prefix: Union[str, Binary_Unit],
known_prefix: str | Binary_Unit,
unknown_prefix: str | Binary_Unit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Metric_prefix

View File

@ -5,15 +5,16 @@ python3 -m doctest -v avl_tree.py
For testing run:
python avl_tree.py
"""
from __future__ import annotations
import math
import random
from typing import Any, List, Optional
from typing import Any
class my_queue:
def __init__(self) -> None:
self.data: List[Any] = []
self.data: list[Any] = []
self.head: int = 0
self.tail: int = 0
@ -41,17 +42,17 @@ class my_queue:
class my_node:
def __init__(self, data: Any) -> None:
self.data = data
self.left: Optional[my_node] = None
self.right: Optional[my_node] = None
self.left: my_node | None = None
self.right: my_node | None = None
self.height: int = 1
def get_data(self) -> Any:
return self.data
def get_left(self) -> Optional["my_node"]:
def get_left(self) -> my_node | None:
return self.left
def get_right(self) -> Optional["my_node"]:
def get_right(self) -> my_node | None:
return self.right
def get_height(self) -> int:
@ -61,11 +62,11 @@ class my_node:
self.data = data
return
def set_left(self, node: Optional["my_node"]) -> None:
def set_left(self, node: my_node | None) -> None:
self.left = node
return
def set_right(self, node: Optional["my_node"]) -> None:
def set_right(self, node: my_node | None) -> None:
self.right = node
return
@ -74,7 +75,7 @@ class my_node:
return
def get_height(node: Optional["my_node"]) -> int:
def get_height(node: my_node | None) -> int:
if node is None:
return 0
return node.get_height()
@ -149,7 +150,7 @@ def rl_rotation(node: my_node) -> my_node:
return left_rotation(node)
def insert_node(node: Optional["my_node"], data: Any) -> Optional["my_node"]:
def insert_node(node: my_node | None, data: Any) -> my_node | None:
if node is None:
return my_node(data)
if data < node.get_data():
@ -197,7 +198,7 @@ def get_leftMost(root: my_node) -> Any:
return root.get_data()
def del_node(root: my_node, data: Any) -> Optional["my_node"]:
def del_node(root: my_node, data: Any) -> my_node | None:
left_child = root.get_left()
right_child = root.get_right()
if root.get_data() == data:
@ -275,7 +276,7 @@ class AVLtree:
"""
def __init__(self) -> None:
self.root: Optional[my_node] = None
self.root: my_node | None = None
def get_height(self) -> int:
return get_height(self.root)

View File

@ -1,4 +1,4 @@
from typing import Optional
from __future__ import annotations
class Node:
@ -8,11 +8,11 @@ class Node:
def __init__(self, data: int) -> None:
self.data = data
self.left: Optional[Node] = None
self.right: Optional[Node] = None
self.left: Node | None = None
self.right: Node | None = None
def display(tree: Optional[Node]) -> None: # In Order traversal of the tree
def display(tree: Node | None) -> None: # In Order traversal of the tree
"""
>>> root = Node(1)
>>> root.left = Node(0)
@ -30,7 +30,7 @@ def display(tree: Optional[Node]) -> None: # In Order traversal of the tree
display(tree.right)
def depth_of_tree(tree: Optional[Node]) -> int:
def depth_of_tree(tree: Node | None) -> int:
"""
Recursive function that returns the depth of a binary tree.

View File

@ -7,21 +7,23 @@ python -m unittest binary_search_tree_recursive.py
To run an example:
python binary_search_tree_recursive.py
"""
from __future__ import annotations
import unittest
from typing import Iterator, Optional
from typing import Iterator
class Node:
def __init__(self, label: int, parent: Optional["Node"]) -> None:
def __init__(self, label: int, parent: Node | None) -> None:
self.label = label
self.parent = parent
self.left: Optional[Node] = None
self.right: Optional[Node] = None
self.left: Node | None = None
self.right: Node | None = None
class BinarySearchTree:
def __init__(self) -> None:
self.root: Optional[Node] = None
self.root: Node | None = None
def empty(self) -> None:
"""
@ -66,9 +68,7 @@ class BinarySearchTree:
"""
self.root = self._put(self.root, label)
def _put(
self, node: Optional[Node], label: int, parent: Optional[Node] = None
) -> Node:
def _put(self, node: Node | None, label: int, parent: Node | None = None) -> Node:
if node is None:
node = Node(label, parent)
else:
@ -98,7 +98,7 @@ class BinarySearchTree:
"""
return self._search(self.root, label)
def _search(self, node: Optional[Node], label: int) -> Node:
def _search(self, node: Node | None, label: int) -> Node:
if node is None:
raise Exception(f"Node with label {label} does not exist")
else:
@ -140,7 +140,7 @@ class BinarySearchTree:
else:
self._reassign_nodes(node, None)
def _reassign_nodes(self, node: Node, new_children: Optional[Node]) -> None:
def _reassign_nodes(self, node: Node, new_children: Node | None) -> None:
if new_children:
new_children.parent = node.parent
@ -244,7 +244,7 @@ class BinarySearchTree:
"""
return self._inorder_traversal(self.root)
def _inorder_traversal(self, node: Optional[Node]) -> Iterator[Node]:
def _inorder_traversal(self, node: Node | None) -> Iterator[Node]:
if node is not None:
yield from self._inorder_traversal(node.left)
yield node
@ -266,7 +266,7 @@ class BinarySearchTree:
"""
return self._preorder_traversal(self.root)
def _preorder_traversal(self, node: Optional[Node]) -> Iterator[Node]:
def _preorder_traversal(self, node: Node | None) -> Iterator[Node]:
if node is not None:
yield node
yield from self._preorder_traversal(node.left)

View File

@ -1,13 +1,14 @@
# https://en.wikipedia.org/wiki/Tree_traversal
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional
@dataclass
class Node:
data: int
left: Optional["Node"] = None
right: Optional["Node"] = None
left: Node | None = None
right: Node | None = None
def make_tree() -> Node:

View File

@ -1,7 +1,6 @@
from __future__ import annotations
import math
from typing import List, Union
class SegmentTree:
@ -38,7 +37,7 @@ class SegmentTree:
return idx * 2 + 1
def build(
self, idx: int, left_element: int, right_element: int, A: List[int]
self, idx: int, left_element: int, right_element: int, A: list[int]
) -> None:
if left_element == right_element:
self.segment_tree[idx] = A[left_element - 1]
@ -89,7 +88,7 @@ class SegmentTree:
# query with O(lg n)
def query(
self, idx: int, left_element: int, right_element: int, a: int, b: int
) -> Union[int, float]:
) -> int | float:
"""
query(1, 1, size, a, b) for query max of [a,b]
>>> A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]

View File

@ -5,7 +5,7 @@ The rule for merging is that if two nodes overlap, then put the value sum of
both nodes to the new value of the merged node. Otherwise, the NOT null node
will be used as the node of new tree.
"""
from typing import Optional
from __future__ import annotations
class Node:
@ -15,11 +15,11 @@ class Node:
def __init__(self, value: int = 0) -> None:
self.value = value
self.left: Optional[Node] = None
self.right: Optional[Node] = None
self.left: Node | None = None
self.right: Node | None = None
def merge_two_binary_trees(tree1: Optional[Node], tree2: Optional[Node]) -> Node:
def merge_two_binary_trees(tree1: Node | None, tree2: Node | None) -> Node:
"""
Returns root node of the merged tree.
@ -52,7 +52,7 @@ def merge_two_binary_trees(tree1: Optional[Node], tree2: Optional[Node]) -> Node
return tree1
def print_preorder(root: Optional[Node]) -> None:
def print_preorder(root: Node | None) -> None:
"""
Print pre-order traversal of the tree.

View File

@ -2,7 +2,9 @@
python/black : true
flake8 : passed
"""
from typing import Iterator, Optional
from __future__ import annotations
from typing import Iterator
class RedBlackTree:
@ -21,11 +23,11 @@ class RedBlackTree:
def __init__(
self,
label: Optional[int] = None,
label: int | None = None,
color: int = 0,
parent: Optional["RedBlackTree"] = None,
left: Optional["RedBlackTree"] = None,
right: Optional["RedBlackTree"] = None,
parent: RedBlackTree | None = None,
left: RedBlackTree | None = None,
right: RedBlackTree | None = None,
) -> None:
"""Initialize a new Red-Black Tree node with the given values:
label: The value associated with this node
@ -42,7 +44,7 @@ class RedBlackTree:
# Here are functions which are specific to red-black trees
def rotate_left(self) -> "RedBlackTree":
def rotate_left(self) -> RedBlackTree:
"""Rotate the subtree rooted at this node to the left and
returns the new root to this subtree.
Performing one rotation can be done in O(1).
@ -62,7 +64,7 @@ class RedBlackTree:
right.parent = parent
return right
def rotate_right(self) -> "RedBlackTree":
def rotate_right(self) -> RedBlackTree:
"""Rotate the subtree rooted at this node to the right and
returns the new root to this subtree.
Performing one rotation can be done in O(1).
@ -82,7 +84,7 @@ class RedBlackTree:
left.parent = parent
return left
def insert(self, label: int) -> "RedBlackTree":
def insert(self, label: int) -> RedBlackTree:
"""Inserts label into the subtree rooted at self, performs any
rotations necessary to maintain balance, and then returns the
new root to this subtree (likely self).
@ -139,7 +141,7 @@ class RedBlackTree:
self.grandparent.color = 1
self.grandparent._insert_repair()
def remove(self, label: int) -> "RedBlackTree":
def remove(self, label: int) -> RedBlackTree:
"""Remove label from this tree."""
if self.label == label:
if self.left and self.right:
@ -337,7 +339,7 @@ class RedBlackTree:
"""
return self.search(label) is not None
def search(self, label: int) -> "RedBlackTree":
def search(self, label: int) -> RedBlackTree:
"""Search through the tree for label, returning its node if
it's found, and None otherwise.
This method is guaranteed to run in O(log(n)) time.
@ -411,7 +413,7 @@ class RedBlackTree:
return self.label
@property
def grandparent(self) -> "RedBlackTree":
def grandparent(self) -> RedBlackTree:
"""Get the current node's grandparent, or None if it doesn't exist."""
if self.parent is None:
return None
@ -419,7 +421,7 @@ class RedBlackTree:
return self.parent.parent
@property
def sibling(self) -> "RedBlackTree":
def sibling(self) -> RedBlackTree:
"""Get the current node's sibling, or None if it doesn't exist."""
if self.parent is None:
return None

View File

@ -1,9 +1,6 @@
# flake8: noqa
from __future__ import annotations
from random import random
from typing import Optional, Tuple
class Node:
@ -12,11 +9,11 @@ class Node:
Treap is a binary tree by value and heap by priority
"""
def __init__(self, value: Optional[int] = None):
def __init__(self, value: int | None = None):
self.value = value
self.prior = random()
self.left: Optional[Node] = None
self.right: Optional[Node] = None
self.left: Node | None = None
self.right: Node | None = None
def __repr__(self) -> str:
from pprint import pformat
@ -35,7 +32,7 @@ class Node:
return value + left + right
def split(root: Optional[Node], value: int) -> Tuple[Optional[Node], Optional[Node]]:
def split(root: Node | None, value: int) -> tuple[Node | None, Node | None]:
"""
We split current tree into 2 trees with value:
@ -64,7 +61,7 @@ def split(root: Optional[Node], value: int) -> Tuple[Optional[Node], Optional[No
return root, right
def merge(left: Optional[Node], right: Optional[Node]) -> Optional[Node]:
def merge(left: Node | None, right: Node | None) -> Node | None:
"""
We merge 2 trees into one.
Note: all left tree's values must be less than all right tree's
@ -86,7 +83,7 @@ def merge(left: Optional[Node], right: Optional[Node]) -> Optional[Node]:
return right
def insert(root: Optional[Node], value: int) -> Optional[Node]:
def insert(root: Node | None, value: int) -> Node | None:
"""
Insert element
@ -99,7 +96,7 @@ def insert(root: Optional[Node], value: int) -> Optional[Node]:
return merge(merge(left, node), right)
def erase(root: Optional[Node], value: int) -> Optional[Node]:
def erase(root: Node | None, value: int) -> Node | None:
"""
Erase element
@ -112,7 +109,7 @@ def erase(root: Optional[Node], value: int) -> Optional[Node]:
return merge(left, right)
def inorder(root: Optional[Node]) -> None:
def inorder(root: Node | None) -> None:
"""
Just recursive print of a tree
"""
@ -124,7 +121,7 @@ def inorder(root: Optional[Node]) -> None:
inorder(root.right)
def interactTreap(root: Optional[Node], args: str) -> Optional[Node]:
def interactTreap(root: Node | None, args: str) -> Node | None:
"""
Commands:
+ value to add value into treap

View File

@ -7,8 +7,7 @@ such as the with segment trees or fenwick trees. You can read more about them he
2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s
3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s
"""
from typing import Optional
from __future__ import annotations
test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7]
@ -18,8 +17,8 @@ class Node:
self.minn: int = -1
self.maxx: int = -1
self.map_left: list[int] = [-1] * length
self.left: Optional[Node] = None
self.right: Optional[Node] = None
self.left: Node | None = None
self.right: Node | None = None
def __repr__(self) -> str:
"""

View File

@ -19,7 +19,7 @@ class HashTable:
return self._keys
def balanced_factor(self):
return sum([1 for slot in self.values if slot is not None]) / (
return sum(1 for slot in self.values if slot is not None) / (
self.size_table * self.charge_factor
)

View File

@ -14,7 +14,7 @@ class HashTableWithLinkedList(HashTable):
def balanced_factor(self):
return (
sum([self.charge_factor - len(slot) for slot in self.values])
sum(self.charge_factor - len(slot) for slot in self.values)
/ self.size_table
* self.charge_factor
)

View File

@ -1,4 +1,6 @@
from typing import Iterable, List, Optional
from __future__ import annotations
from typing import Iterable
class Heap:
@ -25,19 +27,19 @@ class Heap:
"""
def __init__(self) -> None:
self.h: List[float] = []
self.h: list[float] = []
self.heap_size: int = 0
def __repr__(self) -> str:
return str(self.h)
def parent_index(self, child_idx: int) -> Optional[int]:
def parent_index(self, child_idx: int) -> int | None:
"""return the parent index of given child"""
if child_idx > 0:
return (child_idx - 1) // 2
return None
def left_child_idx(self, parent_idx: int) -> Optional[int]:
def left_child_idx(self, parent_idx: int) -> int | None:
"""
return the left child index if the left child exists.
if not, return None.
@ -47,7 +49,7 @@ class Heap:
return left_child_index
return None
def right_child_idx(self, parent_idx: int) -> Optional[int]:
def right_child_idx(self, parent_idx: int) -> int | None:
"""
return the right child index if the right child exists.
if not, return None.

View File

@ -3,7 +3,7 @@
from __future__ import annotations
import random
from typing import Generic, Iterable, List, Optional, TypeVar
from typing import Generic, Iterable, TypeVar
T = TypeVar("T")
@ -16,8 +16,8 @@ class RandomizedHeapNode(Generic[T]):
def __init__(self, value: T) -> None:
self._value: T = value
self.left: Optional[RandomizedHeapNode[T]] = None
self.right: Optional[RandomizedHeapNode[T]] = None
self.left: RandomizedHeapNode[T] | None = None
self.right: RandomizedHeapNode[T] | None = None
@property
def value(self) -> T:
@ -26,8 +26,8 @@ class RandomizedHeapNode(Generic[T]):
@staticmethod
def merge(
root1: Optional[RandomizedHeapNode[T]], root2: Optional[RandomizedHeapNode[T]]
) -> Optional[RandomizedHeapNode[T]]:
root1: RandomizedHeapNode[T] | None, root2: RandomizedHeapNode[T] | None
) -> RandomizedHeapNode[T] | None:
"""Merge 2 nodes together."""
if not root1:
return root2
@ -69,13 +69,13 @@ class RandomizedHeap(Generic[T]):
[-1, 0, 1]
"""
def __init__(self, data: Optional[Iterable[T]] = ()) -> None:
def __init__(self, data: Iterable[T] | None = ()) -> None:
"""
>>> rh = RandomizedHeap([3, 1, 3, 7])
>>> rh.to_sorted_list()
[1, 3, 3, 7]
"""
self._root: Optional[RandomizedHeapNode[T]] = None
self._root: RandomizedHeapNode[T] | None = None
for item in data:
self.insert(item)
@ -151,7 +151,7 @@ class RandomizedHeap(Generic[T]):
"""
self._root = None
def to_sorted_list(self) -> List[T]:
def to_sorted_list(self) -> list[T]:
"""
Returns sorted list containing all the values in the heap.

View File

@ -2,7 +2,7 @@
from __future__ import annotations
from typing import Generic, Iterable, Iterator, Optional, TypeVar
from typing import Generic, Iterable, Iterator, TypeVar
T = TypeVar("T")
@ -15,8 +15,8 @@ class SkewNode(Generic[T]):
def __init__(self, value: T) -> None:
self._value: T = value
self.left: Optional[SkewNode[T]] = None
self.right: Optional[SkewNode[T]] = None
self.left: SkewNode[T] | None = None
self.right: SkewNode[T] | None = None
@property
def value(self) -> T:
@ -25,8 +25,8 @@ class SkewNode(Generic[T]):
@staticmethod
def merge(
root1: Optional[SkewNode[T]], root2: Optional[SkewNode[T]]
) -> Optional[SkewNode[T]]:
root1: SkewNode[T] | None, root2: SkewNode[T] | None
) -> SkewNode[T] | None:
"""Merge 2 nodes together."""
if not root1:
return root2
@ -69,13 +69,13 @@ class SkewHeap(Generic[T]):
[-1, 0, 1]
"""
def __init__(self, data: Optional[Iterable[T]] = ()) -> None:
def __init__(self, data: Iterable[T] | None = ()) -> None:
"""
>>> sh = SkewHeap([3, 1, 3, 7])
>>> list(sh)
[1, 3, 3, 7]
"""
self._root: Optional[SkewNode[T]] = None
self._root: SkewNode[T] | None = None
for item in data:
self.insert(item)

View File

@ -5,7 +5,6 @@ from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
from typing import Optional
test_data_odd = (3, 9, -11, 0, 7, 5, 1, -1)
test_data_even = (4, 6, 2, 0, 8, 10, 3, -2)
@ -14,12 +13,12 @@ test_data_even = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class Node:
data: int
next: Optional[Node]
next: Node | None
class SortedLinkedList:
def __init__(self, ints: Iterable[int]) -> None:
self.head: Optional[Node] = None
self.head: Node | None = None
for i in reversed(sorted(ints)):
self.head = Node(i, self.head)

View File

@ -1,4 +1,4 @@
from typing import List
from __future__ import annotations
class Node:
@ -16,7 +16,7 @@ class Node:
return "->".join(string_rep)
def make_linked_list(elements_list: List):
def make_linked_list(elements_list: list):
"""Creates a Linked List from the elements of the given sequence
(list/tuple) and returns the head of the Linked List.
>>> make_linked_list([])

View File

@ -2,11 +2,10 @@
Based on "Skip Lists: A Probabilistic Alternative to Balanced Trees" by William Pugh
https://epaperpress.com/sortsearch/download/skiplist.pdf
"""
from __future__ import annotations
from random import random
from typing import Generic, Optional, TypeVar
from typing import Generic, TypeVar
KT = TypeVar("KT")
VT = TypeVar("VT")
@ -124,7 +123,7 @@ class SkipList(Generic[KT, VT]):
return level
def _locate_node(self, key) -> tuple[Optional[Node[KT, VT]], list[Node[KT, VT]]]:
def _locate_node(self, key) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
"""
:param key: Searched key,
:return: Tuple with searched node (or None if given key is not present)
@ -222,7 +221,7 @@ class SkipList(Generic[KT, VT]):
else:
update_node.forward[i] = new_node
def find(self, key: VT) -> Optional[VT]:
def find(self, key: VT) -> VT | None:
"""
:param key: Search key.
:return: Value associated with given key or None if given key is not present.

View File

@ -1,5 +1,3 @@
from typing import Any, List
"""
The Reverse Polish Nation also known as Polish postfix notation
or simply postfix notation.
@ -8,6 +6,9 @@ Classic examples of simple stack implementations
Valid operators are +, -, *, /.
Each operand may be an integer or another expression.
"""
from __future__ import annotations
from typing import Any
def evaluate_postfix(postfix_notation: list) -> int:
@ -23,7 +24,7 @@ def evaluate_postfix(postfix_notation: list) -> int:
return 0
operations = {"+", "-", "*", "/"}
stack: List[Any] = []
stack: list[Any] = []
for token in postfix_notation:
if token in operations:

View File

@ -1,5 +1,7 @@
""" A Stack using a linked list like structure """
from typing import Any, Optional
from __future__ import annotations
from typing import Any
class Node:
@ -42,7 +44,7 @@ class LinkedStack:
"""
def __init__(self) -> None:
self.top: Optional[Node] = None
self.top: Node | None = None
def __iter__(self):
node = self.top

View File

@ -1,4 +1,4 @@
from typing import List
from __future__ import annotations
class StackOverflowError(BaseException):
@ -15,7 +15,7 @@ class Stack:
"""
def __init__(self, limit: int = 10):
self.stack: List[int] = []
self.stack: list[int] = []
self.limit = limit
def __bool__(self) -> bool:

View File

@ -12,8 +12,9 @@ There are other several other algorithms for the convex hull problem
which have not been implemented here, yet.
"""
from __future__ import annotations
from typing import Iterable, List, Set, Union
from typing import Iterable
class Point:
@ -84,8 +85,8 @@ class Point:
def _construct_points(
list_of_tuples: Union[List[Point], List[List[float]], Iterable[List[float]]]
) -> List[Point]:
list_of_tuples: list[Point] | list[list[float]] | Iterable[list[float]],
) -> list[Point]:
"""
constructs a list of points from an array-like object of numbers
@ -114,7 +115,7 @@ def _construct_points(
[]
"""
points: List[Point] = []
points: list[Point] = []
if list_of_tuples:
for p in list_of_tuples:
if isinstance(p, Point):
@ -130,7 +131,7 @@ def _construct_points(
return points
def _validate_input(points: Union[List[Point], List[List[float]]]) -> List[Point]:
def _validate_input(points: list[Point] | list[list[float]]) -> list[Point]:
"""
validates an input instance before a convex-hull algorithms uses it
@ -218,7 +219,7 @@ def _det(a: Point, b: Point, c: Point) -> float:
return det
def convex_hull_bf(points: List[Point]) -> List[Point]:
def convex_hull_bf(points: list[Point]) -> list[Point]:
"""
Constructs the convex hull of a set of 2D points using a brute force algorithm.
The algorithm basically considers all combinations of points (i, j) and uses the
@ -291,7 +292,7 @@ def convex_hull_bf(points: List[Point]) -> List[Point]:
return sorted(convex_set)
def convex_hull_recursive(points: List[Point]) -> List[Point]:
def convex_hull_recursive(points: list[Point]) -> list[Point]:
"""
Constructs the convex hull of a set of 2D points using a divide-and-conquer strategy
The algorithm exploits the geometric properties of the problem by repeatedly
@ -362,7 +363,7 @@ def convex_hull_recursive(points: List[Point]) -> List[Point]:
def _construct_hull(
points: List[Point], left: Point, right: Point, convex_set: Set[Point]
points: list[Point], left: Point, right: Point, convex_set: set[Point]
) -> None:
"""
@ -405,7 +406,7 @@ def _construct_hull(
_construct_hull(candidate_points, extreme_point, right, convex_set)
def convex_hull_melkman(points: List[Point]) -> List[Point]:
def convex_hull_melkman(points: list[Point]) -> list[Point]:
"""
Constructs the convex hull of a set of 2D points using the melkman algorithm.
The algorithm works by iteratively inserting points of a simple polygonal chain

View File

@ -8,8 +8,9 @@ This is a divide and conquer algorithm that can find a solution in O(n) time.
For more information of this algorithm:
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/08/Small08.pdf
"""
from __future__ import annotations
from random import choice
from typing import List
def random_pivot(lst):
@ -21,7 +22,7 @@ def random_pivot(lst):
return choice(lst)
def kth_number(lst: List[int], k: int) -> int:
def kth_number(lst: list[int], k: int) -> int:
"""
Return the kth smallest number in lst.
>>> kth_number([2, 1, 3, 4, 5], 3)

View File

@ -1,7 +1,7 @@
from typing import List
from __future__ import annotations
def merge(left_half: List, right_half: List) -> List:
def merge(left_half: list, right_half: list) -> list:
"""Helper function for mergesort.
>>> left_half = [-2]
@ -57,7 +57,7 @@ def merge(left_half: List, right_half: List) -> List:
return sorted_array
def merge_sort(array: List) -> List:
def merge_sort(array: list) -> list:
"""Returns a list of sorted array elements using merge sort.
>>> from random import shuffle

View File

@ -7,10 +7,10 @@ to find the maximum of the array.
(From Kleinberg and Tardos. Algorithm Design.
Addison Wesley 2006: Chapter 5 Solved Exercise 1)
"""
from typing import List
from __future__ import annotations
def peak(lst: List[int]) -> int:
def peak(lst: list[int]) -> int:
"""
Return the peak value of `lst`.
>>> peak([1, 2, 3, 4, 5, 4, 3, 2, 1])

View File

@ -1,9 +1,10 @@
# https://en.m.wikipedia.org/wiki/Electric_power
from __future__ import annotations
from collections import namedtuple
from typing import Tuple
def electric_power(voltage: float, current: float, power: float) -> Tuple:
def electric_power(voltage: float, current: float, power: float) -> tuple:
"""
This function can calculate any one of the three (voltage, current, power),
fundamental value of electrical system.

View File

@ -1,8 +1,8 @@
# https://en.wikipedia.org/wiki/Ohm%27s_law
from typing import Dict
from __future__ import annotations
def ohms_law(voltage: float, current: float, resistance: float) -> Dict[str, float]:
def ohms_law(voltage: float, current: float, resistance: float) -> dict[str, float]:
"""
Apply Ohm's Law, on any two given electrical values, which can be voltage, current,
and resistance, and then in a Python dict return name/value pair of the zero value.

View File

@ -13,7 +13,7 @@ def initialize_unweighted_directed_graph(
graph[i + 1] = []
for e in range(edge_count):
x, y = [int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> ")]
x, y = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> "))
graph[x].append(y)
return graph
@ -26,7 +26,7 @@ def initialize_unweighted_undirected_graph(
graph[i + 1] = []
for e in range(edge_count):
x, y = [int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> ")]
x, y = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> "))
graph[x].append(y)
graph[y].append(x)
return graph
@ -40,14 +40,14 @@ def initialize_weighted_undirected_graph(
graph[i + 1] = []
for e in range(edge_count):
x, y, w = [int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> <weight> ")]
x, y, w = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> <weight> "))
graph[x].append((y, w))
graph[y].append((x, w))
return graph
if __name__ == "__main__":
n, m = [int(i) for i in _input("Number of nodes and edges: ")]
n, m = (int(i) for i in _input("Number of nodes and edges: "))
graph_choice = int(
_input(

View File

@ -11,7 +11,7 @@ def check_negative_cycle(
graph: list[dict[str, int]], distance: list[float], edge_count: int
):
for j in range(edge_count):
u, v, w = [graph[j][k] for k in ["src", "dst", "weight"]]
u, v, w = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf") and distance[u] + w < distance[v]:
return True
return False
@ -38,7 +38,7 @@ def bellman_ford(
for i in range(vertex_count - 1):
for j in range(edge_count):
u, v, w = [graph[j][k] for k in ["src", "dst", "weight"]]
u, v, w = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf") and distance[u] + w < distance[v]:
distance[v] = distance[u] + w
@ -62,10 +62,10 @@ if __name__ == "__main__":
for i in range(E):
print("Edge ", i + 1)
src, dest, weight = [
src, dest, weight = (
int(x)
for x in input("Enter source, destination, weight: ").strip().split(" ")
]
)
graph[i] = {"src": src, "dst": dest, "weight": weight}
source = int(input("\nEnter shortest path source:").strip())

View File

@ -1,13 +1,13 @@
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
from typing import Optional, Union
"""
Finding the shortest path in 0-1-graph in O(E + V) which is faster than dijkstra.
0-1-graph is the weighted graph with the weights equal to 0 or 1.
Link: https://codeforces.com/blog/entry/22276
"""
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
@ -59,7 +59,7 @@ class AdjacencyList:
self._graph[from_vertex].append(Edge(to_vertex, weight))
def get_shortest_path(self, start_vertex: int, finish_vertex: int) -> Optional[int]:
def get_shortest_path(self, start_vertex: int, finish_vertex: int) -> int | None:
"""
Return the shortest distance from start_vertex to finish_vertex in 0-1-graph.
1 1 1
@ -107,7 +107,7 @@ class AdjacencyList:
ValueError: No path from start_vertex to finish_vertex.
"""
queue = deque([start_vertex])
distances: list[Union[int, None]] = [None] * self.size
distances: list[int | None] = [None] * self.size
distances[start_vertex] = 0
while queue:

View File

@ -1,15 +1,12 @@
"""
https://en.wikipedia.org/wiki/Bidirectional_search
"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
from typing import Optional
HEURISTIC = 0
grid = [
@ -50,7 +47,7 @@ class Node:
goal_x: int,
goal_y: int,
g_cost: int,
parent: Optional[Node],
parent: Node | None,
) -> None:
self.pos_x = pos_x
self.pos_y = pos_y
@ -157,7 +154,7 @@ class AStar:
)
return successors
def retrace_path(self, node: Optional[Node]) -> list[TPosition]:
def retrace_path(self, node: Node | None) -> list[TPosition]:
"""
Retrace the path from parents to parents until start node
"""

View File

@ -1,11 +1,9 @@
"""
https://en.wikipedia.org/wiki/Bidirectional_search
"""
from __future__ import annotations
import time
from typing import Optional
Path = list[tuple[int, int]]
@ -24,7 +22,7 @@ delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class Node:
def __init__(
self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, parent: Optional[Node]
self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, parent: Node | None
):
self.pos_x = pos_x
self.pos_y = pos_y
@ -57,7 +55,7 @@ class BreadthFirstSearch:
self.node_queue = [self.start]
self.reached = False
def search(self) -> Optional[Path]:
def search(self) -> Path | None:
while self.node_queue:
current_node = self.node_queue.pop(0)
@ -93,7 +91,7 @@ class BreadthFirstSearch:
)
return successors
def retrace_path(self, node: Optional[Node]) -> Path:
def retrace_path(self, node: Node | None) -> Path:
"""
Retrace the path from parents to parents until start node
"""
@ -125,7 +123,7 @@ class BidirectionalBreadthFirstSearch:
self.bwd_bfs = BreadthFirstSearch(goal, start)
self.reached = False
def search(self) -> Optional[Path]:
def search(self) -> Path | None:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
current_fwd_node = self.fwd_bfs.node_queue.pop(0)
current_bwd_node = self.bwd_bfs.node_queue.pop(0)

View File

@ -1,13 +1,12 @@
#!/usr/bin/python
""" Author: OMKAR PATHAK """
from typing import Dict, List, Set
from __future__ import annotations
class Graph:
def __init__(self) -> None:
self.vertices: Dict[int, List[int]] = {}
self.vertices: dict[int, list[int]] = {}
def print_graph(self) -> None:
"""
@ -35,7 +34,7 @@ class Graph:
else:
self.vertices[from_vertex] = [to_vertex]
def bfs(self, start_vertex: int) -> Set[int]:
def bfs(self, start_vertex: int) -> set[int]:
"""
>>> g = Graph()
>>> g.add_edge(0, 1)

View File

@ -3,8 +3,6 @@ from a given source node to a target node in an unweighted graph.
"""
from __future__ import annotations
from typing import Optional
graph = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
@ -24,7 +22,7 @@ class Graph:
"""
self.graph = graph
# mapping node to its parent in resulting breadth first tree
self.parent: dict[str, Optional[str]] = {}
self.parent: dict[str, str | None] = {}
self.source_vertex = source_vertex
def breath_first_search(self) -> None:

View File

@ -1,11 +1,8 @@
"""Non recursive implementation of a DFS algorithm."""
from __future__ import annotations
from typing import Set
def depth_first_search(graph: dict, start: str) -> Set[str]:
def depth_first_search(graph: dict, start: str) -> set[str]:
"""Depth First Search on Graph
:param graph: directed graph in dictionary format
:param start: starting vertex as a string

View File

@ -4,8 +4,6 @@ https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS
from __future__ import annotations
from typing import Optional
Path = list[tuple[int, int]]
grid = [
@ -44,7 +42,7 @@ class Node:
goal_x: int,
goal_y: int,
g_cost: float,
parent: Optional[Node],
parent: Node | None,
):
self.pos_x = pos_x
self.pos_y = pos_y
@ -93,7 +91,7 @@ class GreedyBestFirst:
self.reached = False
def search(self) -> Optional[Path]:
def search(self) -> Path | None:
"""
Search for the path,
if a path is not found, only the starting position is returned
@ -156,7 +154,7 @@ class GreedyBestFirst:
)
return successors
def retrace_path(self, node: Optional[Node]) -> Path:
def retrace_path(self, node: Node | None) -> Path:
"""
Retrace the path from parents to parents until start node
"""

View File

@ -40,7 +40,7 @@ if __name__ == "__main__": # pragma: no cover
edges = []
for _ in range(num_edges):
node1, node2, cost = [int(x) for x in input().strip().split()]
node1, node2, cost = (int(x) for x in input().strip().split())
edges.append((node1, node2, cost))
kruskal(num_nodes, edges)

View File

@ -6,9 +6,10 @@ edges in the tree is minimized. The algorithm operates by building this tree one
at a time, from an arbitrary starting vertex, at each step adding the cheapest possible
connection from the tree to another vertex.
"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, Optional, TypeVar
from typing import Generic, TypeVar
T = TypeVar("T")
@ -219,7 +220,7 @@ class GraphUndirectedWeighted(Generic[T]):
def prims_algo(
graph: GraphUndirectedWeighted[T],
) -> tuple[dict[T, int], dict[T, Optional[T]]]:
) -> tuple[dict[T, int], dict[T, T | None]]:
"""
>>> graph = GraphUndirectedWeighted()
@ -240,7 +241,7 @@ def prims_algo(
"""
# prim's algorithm for minimum spanning tree
dist: dict[T, int] = {node: maxsize for node in graph.connections}
parent: dict[T, Optional[T]] = {node: None for node in graph.connections}
parent: dict[T, T | None] = {node: None for node in graph.connections}
priority_queue: MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():

View File

@ -43,7 +43,7 @@ def page_rank(nodes, limit=3, d=0.85):
print(f"======= Iteration {i + 1} =======")
for j, node in enumerate(nodes):
ranks[node.name] = (1 - d) + d * sum(
[ranks[ib] / outbounds[ib] for ib in node.inbound]
ranks[ib] / outbounds[ib] for ib in node.inbound
)
print(ranks)

View File

@ -1,4 +1,4 @@
from typing import List
from __future__ import annotations
def dfs(u):
@ -39,16 +39,16 @@ if __name__ == "__main__":
# n - no of nodes, m - no of edges
n, m = list(map(int, input().strip().split()))
graph: List[List[int]] = [[] for i in range(n)] # graph
reversedGraph: List[List[int]] = [[] for i in range(n)] # reversed graph
graph: list[list[int]] = [[] for i in range(n)] # graph
reversedGraph: list[list[int]] = [[] for i in range(n)] # reversed graph
# input graph data (edges)
for i in range(m):
u, v = list(map(int, input().strip().split()))
graph[u].append(v)
reversedGraph[v].append(u)
stack: List[int] = []
visit: List[bool] = [False] * n
scc: List[int] = []
component: List[int] = []
stack: list[int] = []
visit: list[bool] = [False] * n
scc: list[int] = []
component: list[int] = []
print(kosaraju())

View File

@ -1,5 +1,5 @@
""" Luhn Algorithm """
from typing import List
from __future__ import annotations
def is_luhn(string: str) -> bool:
@ -17,9 +17,9 @@ def is_luhn(string: str) -> bool:
[False, False, False, True, False, False, False, False, False, False]
"""
check_digit: int
_vector: List[str] = list(string)
_vector: list[str] = list(string)
__vector, check_digit = _vector[:-1], int(_vector[-1])
vector: List[int] = [int(digit) for digit in __vector]
vector: list[int] = [int(digit) for digit in __vector]
vector.reverse()
for i, digit in enumerate(vector):

View File

@ -1,11 +1,10 @@
from typing import List
""" A naive recursive implementation of 0-1 Knapsack Problem
https://en.wikipedia.org/wiki/Knapsack_problem
"""
from __future__ import annotations
def knapsack(capacity: int, weights: List[int], values: List[int], counter: int) -> int:
def knapsack(capacity: int, weights: list[int], values: list[int], counter: int) -> int:
"""
Returns the maximum value that can be put in a knapsack of a capacity cap,
whereby each weight w has a specific value val.

View File

@ -18,11 +18,11 @@ Overview:
- function squareZeroMatrix(N)
- function randomMatrix(W,H,a,b)
"""
from __future__ import annotations
import math
import random
from typing import Collection, Optional, Union, overload
from typing import Collection, overload
class Vector:
@ -46,7 +46,7 @@ class Vector:
TODO: compare-operator
"""
def __init__(self, components: Optional[Collection[float]] = None) -> None:
def __init__(self, components: Collection[float] | None = None) -> None:
"""
input: components or nothing
simple constructor for init the vector
@ -97,7 +97,7 @@ class Vector:
summe += c ** 2
return math.sqrt(summe)
def __add__(self, other: "Vector") -> "Vector":
def __add__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
@ -110,7 +110,7 @@ class Vector:
else:
raise Exception("must have the same size")
def __sub__(self, other: "Vector") -> "Vector":
def __sub__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
@ -124,14 +124,14 @@ class Vector:
raise Exception("must have the same size")
@overload
def __mul__(self, other: float) -> "Vector":
def __mul__(self, other: float) -> Vector:
...
@overload
def __mul__(self, other: "Vector") -> float:
def __mul__(self, other: Vector) -> float:
...
def __mul__(self, other: Union[float, "Vector"]) -> Union[float, "Vector"]:
def __mul__(self, other: float | Vector) -> float | Vector:
"""
mul implements the scalar multiplication
and the dot-product
@ -148,7 +148,7 @@ class Vector:
else: # error case
raise Exception("invalid operand!")
def copy(self) -> "Vector":
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
@ -313,14 +313,14 @@ class Matrix:
raise Exception("matrix is not square")
@overload
def __mul__(self, other: float) -> "Matrix":
def __mul__(self, other: float) -> Matrix:
...
@overload
def __mul__(self, other: Vector) -> Vector:
...
def __mul__(self, other: Union[float, Vector]) -> Union[Vector, "Matrix"]:
def __mul__(self, other: float | Vector) -> Vector | Matrix:
"""
implements the matrix-vector multiplication.
implements the matrix-scalar multiplication
@ -347,7 +347,7 @@ class Matrix:
]
return Matrix(matrix, self.__width, self.__height)
def __add__(self, other: "Matrix") -> "Matrix":
def __add__(self, other: Matrix) -> Matrix:
"""
implements the matrix-addition.
"""
@ -362,7 +362,7 @@ class Matrix:
else:
raise Exception("matrix must have the same dimension!")
def __sub__(self, other: "Matrix") -> "Matrix":
def __sub__(self, other: Matrix) -> Matrix:
"""
implements the matrix-subtraction.
"""

View File

@ -7,8 +7,9 @@ returns a list containing two data for each vector:
1. the nearest vector
2. distance between the vector and the nearest vector (float)
"""
from __future__ import annotations
import math
from typing import List, Union
import numpy as np
@ -33,7 +34,7 @@ def euclidean(input_a: np.ndarray, input_b: np.ndarray) -> float:
def similarity_search(
dataset: np.ndarray, value_array: np.ndarray
) -> List[List[Union[List[float], float]]]:
) -> list[list[list[float] | float]]:
"""
:param dataset: Set containing the vectors. Should be ndarray.
:param value_array: vector/vectors we want to know the nearest vector from dataset.

View File

@ -1,14 +1,15 @@
"""
Approximates the area under the curve using the trapezoidal rule
"""
from __future__ import annotations
from typing import Callable, Union
from typing import Callable
def trapezoidal_area(
fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
fnc: Callable[[int | float], int | float],
x_start: int | float,
x_end: int | float,
steps: int = 100,
) -> float:
"""

View File

@ -1,7 +1,7 @@
from typing import List
from __future__ import annotations
def mean(nums: List) -> float:
def mean(nums: list) -> float:
"""
Find mean of a list of numbers.
Wiki: https://en.wikipedia.org/wiki/Mean

View File

@ -1,7 +1,7 @@
from typing import Union
from __future__ import annotations
def median(nums: list) -> Union[int, float]:
def median(nums: list) -> int | float:
"""
Find median of a list of numbers.
Wiki: https://en.wikipedia.org/wiki/Median

View File

@ -68,7 +68,7 @@ def calculate_prob(text: str) -> None:
my_fir_sum += prob * math.log2(prob) # entropy formula.
# print entropy
print("{:.1f}".format(round(-1 * my_fir_sum)))
print(f"{round(-1 * my_fir_sum):.1f}")
# two len string
all_sum = sum(two_char_strings.values())
@ -83,10 +83,10 @@ def calculate_prob(text: str) -> None:
my_sec_sum += prob * math.log2(prob)
# print second entropy
print("{:.1f}".format(round(-1 * my_sec_sum)))
print(f"{round(-1 * my_sec_sum):.1f}")
# print the difference between them
print("{:.1f}".format(round((-1 * my_sec_sum) - (-1 * my_fir_sum))))
print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}")
def analyze_text(text: str) -> tuple[dict, dict]:

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from typing import Iterable, Union
import numpy as np

View File

@ -12,12 +12,12 @@ https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
# @Email: silentcat@protonmail.com
# @Last modified by: pikulet
# @Last modified time: 2020-10-02
from __future__ import annotations
import sys
from typing import Tuple
def extended_euclidean_algorithm(a: int, b: int) -> Tuple[int, int]:
def extended_euclidean_algorithm(a: int, b: int) -> tuple[int, int]:
"""
Extended Euclidean Algorithm.

View File

@ -37,7 +37,7 @@ def exactPrimeFactorCount(n):
if __name__ == "__main__":
n = 51242183
print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}")
print("The value of log(log(n)) is {:.4f}".format(math.log(math.log(n))))
print(f"The value of log(log(n)) is {math.log(math.log(n)):.4f}")
"""
The number of distinct prime factors is/are 3

View File

@ -1,11 +1,13 @@
from __future__ import annotations
import math
from typing import Callable, Union
from typing import Callable
def line_length(
fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
fnc: Callable[[int | float], int | float],
x_start: int | float,
x_end: int | float,
steps: int = 100,
) -> float:

View File

@ -6,10 +6,10 @@ Instead of using a nested for loop, in a Brute force approach we will use a tech
called 'Window sliding technique' where the nested loops can be converted to a single
loop to reduce time complexity.
"""
from typing import List
from __future__ import annotations
def max_sum_in_array(array: List[int], k: int) -> int:
def max_sum_in_array(array: list[int], k: int) -> int:
"""
Returns the maximum sum of k consecutive elements
>>> arr = [1, 4, 2, 10, 2, 3, 1, 0, 20]

View File

@ -1,7 +1,7 @@
from typing import List
from __future__ import annotations
def median_of_two_arrays(nums1: List[float], nums2: List[float]) -> float:
def median_of_two_arrays(nums1: list[float], nums2: list[float]) -> float:
"""
>>> median_of_two_arrays([1, 2], [3])
2

View File

@ -1,14 +1,15 @@
"""
Approximates the area under the curve using the trapezoidal rule
"""
from __future__ import annotations
from typing import Callable, Union
from typing import Callable
def trapezoidal_area(
fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
fnc: Callable[[int | float], int | float],
x_start: int | float,
x_end: int | float,
steps: int = 100,
) -> float:

View File

@ -10,13 +10,12 @@ Reference: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
doctest provider: Bruno Simas Hadlich (https://github.com/brunohadlich)
Also thanks to Dmitry (https://github.com/LizardWizzard) for finding the problem
"""
from __future__ import annotations
import math
from typing import List
def prime_sieve(num: int) -> List[int]:
def prime_sieve(num: int) -> list[int]:
"""
Returns a list with all prime numbers up to n.

View File

@ -3,11 +3,12 @@ Find Volumes of Various Shapes.
Wikipedia reference: https://en.wikipedia.org/wiki/Volume
"""
from __future__ import annotations
from math import pi, pow
from typing import Union
def vol_cube(side_length: Union[int, float]) -> float:
def vol_cube(side_length: int | float) -> float:
"""
Calculate the Volume of a Cube.

View File

@ -1,10 +1,8 @@
from __future__ import annotations
from typing import Union
def search_in_a_sorted_matrix(
mat: list[list], m: int, n: int, key: Union[int, float]
mat: list[list], m: int, n: int, key: int | float
) -> None:
"""
>>> search_in_a_sorted_matrix(

View File

@ -14,7 +14,7 @@ def date_to_weekday(inp_date: str) -> str:
>>> date_to_weekday("1/1/2021")
'Friday'
"""
day, month, year = [int(x) for x in inp_date.split("/")]
day, month, year = (int(x) for x in inp_date.split("/"))
if year % 100 == 0:
year = "00"
new_base_date: str = f"{day}/{month}/{year%100} 0:0:0"

View File

@ -8,9 +8,9 @@ conjunctive normal form, i.e, for solving the Conjunctive Normal Form SATisfiabi
For more information about the algorithm: https://en.wikipedia.org/wiki/DPLL_algorithm
"""
from __future__ import annotations
import random
from typing import Dict, List
class Clause:
@ -27,7 +27,7 @@ class Clause:
True
"""
def __init__(self, literals: List[int]) -> None:
def __init__(self, literals: list[int]) -> None:
"""
Represent the literals and an assignment in a clause."
"""
@ -52,7 +52,7 @@ class Clause:
"""
return len(self.literals)
def assign(self, model: Dict[str, bool]) -> None:
def assign(self, model: dict[str, bool]) -> None:
"""
Assign values to literals of the clause as given by model.
"""
@ -68,7 +68,7 @@ class Clause:
value = not value
self.literals[literal] = value
def evaluate(self, model: Dict[str, bool]) -> bool:
def evaluate(self, model: dict[str, bool]) -> bool:
"""
Evaluates the clause with the assignments in model.
This has the following steps:
@ -97,7 +97,7 @@ class Formula:
{{A1, A2, A3'}, {A5', A2', A1}} is ((A1 v A2 v A3') and (A5' v A2' v A1))
"""
def __init__(self, clauses: List[Clause]) -> None:
def __init__(self, clauses: list[Clause]) -> None:
"""
Represent the number of clauses and the clauses themselves.
"""
@ -146,7 +146,7 @@ def generate_formula() -> Formula:
return Formula(set(clauses))
def generate_parameters(formula: Formula) -> (List[Clause], List[str]):
def generate_parameters(formula: Formula) -> (list[Clause], list[str]):
"""
Return the clauses and symbols from a formula.
A symbol is the uncomplemented form of a literal.
@ -173,8 +173,8 @@ def generate_parameters(formula: Formula) -> (List[Clause], List[str]):
def find_pure_symbols(
clauses: List[Clause], symbols: List[str], model: Dict[str, bool]
) -> (List[str], Dict[str, bool]):
clauses: list[Clause], symbols: list[str], model: dict[str, bool]
) -> (list[str], dict[str, bool]):
"""
Return pure symbols and their values to satisfy clause.
Pure symbols are symbols in a formula that exist only
@ -225,8 +225,8 @@ def find_pure_symbols(
def find_unit_clauses(
clauses: List[Clause], model: Dict[str, bool]
) -> (List[str], Dict[str, bool]):
clauses: list[Clause], model: dict[str, bool]
) -> (list[str], dict[str, bool]):
"""
Returns the unit symbols and their values to satisfy clause.
Unit symbols are symbols in a formula that are:
@ -273,8 +273,8 @@ def find_unit_clauses(
def dpll_algorithm(
clauses: List[Clause], symbols: List[str], model: Dict[str, bool]
) -> (bool, Dict[str, bool]):
clauses: list[Clause], symbols: list[str], model: dict[str, bool]
) -> (bool, dict[str, bool]):
"""
Returns the model if the formula is satisfiable, else None
This has the following steps:

View File

@ -1,4 +1,6 @@
from typing import Callable, Optional
from __future__ import annotations
from typing import Callable
class DoubleLinkedListNode:
@ -119,7 +121,7 @@ class LFUCache:
"""
return key in self.cache
def get(self, key: int) -> Optional[int]:
def get(self, key: int) -> int | None:
"""
Returns the value for the input key and updates the Double Linked List. Returns
None if key is not present in cache

View File

@ -1,4 +1,6 @@
from typing import Callable, Optional
from __future__ import annotations
from typing import Callable
class DoubleLinkedListNode:
@ -125,7 +127,7 @@ class LRUCache:
return key in self.cache
def get(self, key: int) -> Optional[int]:
def get(self, key: int) -> int | None:
"""
Returns the value for the input key and updates the Double Linked List. Returns
None if key is not present in cache

View File

@ -26,7 +26,7 @@ def solution(n: int = 1000) -> int:
0
"""
return sum([e for e in range(3, n) if e % 3 == 0 or e % 5 == 0])
return sum(e for e in range(3, n) if e % 3 == 0 or e % 5 == 0)
if __name__ == "__main__":

View File

@ -25,7 +25,7 @@ def solution(n: int = 1000) -> int:
83700
"""
return sum([i for i in range(n) if i % 3 == 0 or i % 5 == 0])
return sum(i for i in range(n) if i % 3 == 0 or i % 5 == 0)
if __name__ == "__main__":

View File

@ -33,7 +33,7 @@ def solution(n: int = 100) -> int:
1582700
"""
sum_of_squares = sum([i * i for i in range(1, n + 1)])
sum_of_squares = sum(i * i for i in range(1, n + 1))
square_of_sum = int(math.pow(sum(range(1, n + 1)), 2))
return square_of_sum - sum_of_squares

View File

@ -70,10 +70,7 @@ def solution(n: str = N) -> int:
"""
return max(
[
reduce(lambda x, y: int(x) * int(y), n[i : i + 13])
for i in range(len(n) - 12)
]
reduce(lambda x, y: int(x) * int(y), n[i : i + 13]) for i in range(len(n) - 12)
)

View File

@ -29,7 +29,7 @@ def triangle_number_generator():
def count_divisors(n):
return sum([2 for i in range(1, int(n ** 0.5) + 1) if n % i == 0 and i * i != n])
return sum(2 for i in range(1, int(n ** 0.5) + 1) if n % i == 0 and i * i != n)
def solution():

View File

@ -18,7 +18,7 @@ def solution():
"""
file_path = os.path.join(os.path.dirname(__file__), "num.txt")
with open(file_path) as file_hand:
return str(sum([int(line) for line in file_hand]))[:10]
return str(sum(int(line) for line in file_hand))[:10]
if __name__ == "__main__":

View File

@ -25,10 +25,10 @@ that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
"""
from typing import List
from __future__ import annotations
def collatz_sequence(n: int) -> List[int]:
def collatz_sequence(n: int) -> list[int]:
"""Returns the Collatz sequence for n."""
sequence = [n]
while n != 1:
@ -54,7 +54,7 @@ def solution(n: int = 1000000) -> int:
13255
"""
result = max([(len(collatz_sequence(i)), i) for i in range(1, n)])
result = max((len(collatz_sequence(i)), i) for i in range(1, n))
return result[1]

View File

@ -28,7 +28,7 @@ def solution(num: int = 100) -> int:
>>> solution(1)
1
"""
return sum([int(x) for x in str(factorial(num))])
return sum(int(x) for x in str(factorial(num)))
if __name__ == "__main__":

View File

@ -41,11 +41,9 @@ def solution(n: int = 10000) -> int:
0
"""
total = sum(
[
i
for i in range(1, n)
if sum_of_divisors(sum_of_divisors(i)) == i and sum_of_divisors(i) != i
]
)
return total

View File

@ -14,8 +14,9 @@ and denominator.
If the product of these four fractions is given in its lowest common
terms, find the value of the denominator.
"""
from __future__ import annotations
from fractions import Fraction
from typing import List
def is_digit_cancelling(num: int, den: int) -> bool:
@ -26,7 +27,7 @@ def is_digit_cancelling(num: int, den: int) -> bool:
return False
def fraction_list(digit_len: int) -> List[str]:
def fraction_list(digit_len: int) -> list[str]:
"""
>>> fraction_list(2)
['16/64', '19/95', '26/65', '49/98']

Some files were not shown because too many files have changed in this diff Show More