diff --git a/maths/quadratic_equations_complex_numbers.py b/maths/quadratic_equations_complex_numbers.py index 8f9750860..7c47bdef2 100644 --- a/maths/quadratic_equations_complex_numbers.py +++ b/maths/quadratic_equations_complex_numbers.py @@ -1,38 +1,36 @@ -from math import sqrt +from cmath import sqrt from typing import Tuple -def QuadraticEquation(a: int, b: int, c: int) -> Tuple[str, str]: +def quadratic_roots(a: int, b: int, c: int) -> Tuple[complex, complex]: """ Given the numerical coefficients a, b and c, - prints the solutions for a quadratic equation, for a*x*x + b*x + c. + calculates the roots for any quadratic equation of the form ax^2 + bx + c - >>> QuadraticEquation(a=1, b=3, c=-4) - ('1.0', '-4.0') - >>> QuadraticEquation(5, 6, 1) - ('-0.2', '-1.0') + >>> quadratic_roots(a=1, b=3, c=-4) + (1.0, -4.0) + >>> quadratic_roots(5, 6, 1) + (-0.2, -1.0) + >>> quadratic_roots(1, -6, 25) + ((3+4j), (3-4j)) """ + if a == 0: - raise ValueError("Coefficient 'a' must not be zero for quadratic equations.") + raise ValueError("Coefficient 'a' must not be zero.") delta = b * b - 4 * a * c - if delta >= 0: - return str((-b + sqrt(delta)) / (2 * a)), str((-b - sqrt(delta)) / (2 * a)) - """ - Treats cases of Complexes Solutions(i = imaginary unit) - Ex.: a = 5, b = 2, c = 1 - Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 - """ - snd = sqrt(-delta) - if b == 0: - return f"({snd} * i) / 2", f"({snd} * i) / {2 * a}" - b = -abs(b) - return f"({b}+{snd} * i) / 2", f"({b}+{snd} * i) / {2 * a}" + + root_1 = (-b + sqrt(delta)) / (2 * a) + root_2 = (-b - sqrt(delta)) / (2 * a) + + return ( + root_1.real if not root_1.imag else root_1, + root_2.real if not root_2.imag else root_2, + ) def main(): - solutions = QuadraticEquation(a=5, b=6, c=1) - print("The equation solutions are: {} and {}".format(*solutions)) - # The equation solutions are: -0.2 and -1.0 + solutions = quadratic_roots(a=5, b=6, c=1) + print("The solutions are: {} and {}".format(*solutions)) if __name__ == "__main__":