From db6bd4b17f471d4def7aa441f1da43bb6a0f18ae Mon Sep 17 00:00:00 2001 From: Dipankar Mitra <50228537+Mitra-babu@users.noreply.github.com> Date: Mon, 7 Aug 2023 17:17:42 +0530 Subject: [PATCH] IQR function is added (#8851) * tanh function been added * tanh function been added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * tanh function is added * tanh function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * tanh function added * tanh function added * tanh function is added * Apply suggestions from code review * ELU activation function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * elu activation is added * ELU activation is added * Update maths/elu_activation.py Co-authored-by: Christian Clauss * Exponential_linear_unit activation is added * Exponential_linear_unit activation is added * SiLU activation is added * SiLU activation is added * mish added * mish activation is added * inter_quartile_range function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Mish activation function is added * Mish action is added * mish activation added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * mish activation added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * inter quartile range (IQR) function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * IQR function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * code optimized in IQR function * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * interquartile_range function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update maths/interquartile_range.py Co-authored-by: Christian Clauss * Changes on interquartile_range * numpy removed from interquartile_range * Fixes from code review * Update interquartile_range.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss --- maths/interquartile_range.py | 66 ++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) create mode 100644 maths/interquartile_range.py diff --git a/maths/interquartile_range.py b/maths/interquartile_range.py new file mode 100644 index 000000000..d4d72e73e --- /dev/null +++ b/maths/interquartile_range.py @@ -0,0 +1,66 @@ +""" +An implementation of interquartile range (IQR) which is a measure of statistical +dispersion, which is the spread of the data. + +The function takes the list of numeric values as input and returns the IQR. + +Script inspired by this Wikipedia article: +https://en.wikipedia.org/wiki/Interquartile_range +""" +from __future__ import annotations + + +def find_median(nums: list[int | float]) -> float: + """ + This is the implementation of the median. + :param nums: The list of numeric nums + :return: Median of the list + >>> find_median(nums=([1, 2, 2, 3, 4])) + 2 + >>> find_median(nums=([1, 2, 2, 3, 4, 4])) + 2.5 + >>> find_median(nums=([-1, 2, 0, 3, 4, -4])) + 1.5 + >>> find_median(nums=([1.1, 2.2, 2, 3.3, 4.4, 4])) + 2.65 + """ + div, mod = divmod(len(nums), 2) + if mod: + return nums[div] + return (nums[div] + nums[(div) - 1]) / 2 + + +def interquartile_range(nums: list[int | float]) -> float: + """ + Return the interquartile range for a list of numeric values. + :param nums: The list of numeric values. + :return: interquartile range + + >>> interquartile_range(nums=[4, 1, 2, 3, 2]) + 2.0 + >>> interquartile_range(nums = [-2, -7, -10, 9, 8, 4, -67, 45]) + 17.0 + >>> interquartile_range(nums = [-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1]) + 17.2 + >>> interquartile_range(nums = [0, 0, 0, 0, 0]) + 0.0 + >>> interquartile_range(nums=[]) + Traceback (most recent call last): + ... + ValueError: The list is empty. Provide a non-empty list. + """ + if not nums: + raise ValueError("The list is empty. Provide a non-empty list.") + nums.sort() + length = len(nums) + div, mod = divmod(length, 2) + q1 = find_median(nums[:div]) + half_length = sum((div, mod)) + q3 = find_median(nums[half_length:length]) + return q3 - q1 + + +if __name__ == "__main__": + import doctest + + doctest.testmod()