mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
✅ added tests for Perceptron in Neural Networks (#1506)
* ✅ added tests for Perceptron in Neural Networks
* Space
* Format code with psf/black
This commit is contained in:
parent
1ed47ad6f4
commit
dfea6f3f0b
@ -1,29 +1,53 @@
|
||||
"""
|
||||
|
||||
Perceptron
|
||||
w = w + N * (d(k) - y) * x(k)
|
||||
|
||||
Using perceptron network for oil analysis,
|
||||
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2
|
||||
Using perceptron network for oil analysis, with Measuring of 3 parameters
|
||||
that represent chemical characteristics we can classify the oil, in p1 or p2
|
||||
p1 = -1
|
||||
p2 = 1
|
||||
|
||||
"""
|
||||
import random
|
||||
|
||||
|
||||
class Perceptron:
|
||||
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1):
|
||||
def __init__(self, sample, target, learning_rate=0.01, epoch_number=1000, bias=-1):
|
||||
"""
|
||||
Initializes a Perceptron network for oil analysis
|
||||
:param sample: sample dataset of 3 parameters with shape [30,3]
|
||||
:param target: variable for classification with two possible states -1 or 1
|
||||
:param learning_rate: learning rate used in optimizing.
|
||||
:param epoch_number: number of epochs to train network on.
|
||||
:param bias: bias value for the network.
|
||||
"""
|
||||
self.sample = sample
|
||||
self.exit = exit
|
||||
self.learn_rate = learn_rate
|
||||
if len(self.sample) == 0:
|
||||
raise AttributeError("Sample data can not be empty")
|
||||
self.target = target
|
||||
if len(self.target) == 0:
|
||||
raise AttributeError("Target data can not be empty")
|
||||
if len(self.sample) != len(self.target):
|
||||
raise AttributeError(
|
||||
"Sample data and Target data do not have matching lengths"
|
||||
)
|
||||
self.learning_rate = learning_rate
|
||||
self.epoch_number = epoch_number
|
||||
self.bias = bias
|
||||
self.number_sample = len(sample)
|
||||
self.col_sample = len(sample[0])
|
||||
self.col_sample = len(sample[0]) # number of columns in dataset
|
||||
self.weight = []
|
||||
|
||||
def training(self):
|
||||
def training(self) -> None:
|
||||
"""
|
||||
Trains perceptron for epochs <= given number of epochs
|
||||
:return: None
|
||||
>>> data = [[2.0149, 0.6192, 10.9263]]
|
||||
>>> targets = [-1]
|
||||
>>> perceptron = Perceptron(data,targets)
|
||||
>>> perceptron.training() # doctest: +ELLIPSIS
|
||||
('\\nEpoch:\\n', ...)
|
||||
...
|
||||
"""
|
||||
for sample in self.sample:
|
||||
sample.insert(0, self.bias)
|
||||
|
||||
@ -35,31 +59,47 @@ class Perceptron:
|
||||
epoch_count = 0
|
||||
|
||||
while True:
|
||||
erro = False
|
||||
has_misclassified = False
|
||||
for i in range(self.number_sample):
|
||||
u = 0
|
||||
for j in range(self.col_sample + 1):
|
||||
u = u + self.weight[j] * self.sample[i][j]
|
||||
y = self.sign(u)
|
||||
if y != self.exit[i]:
|
||||
|
||||
if y != self.target[i]:
|
||||
for j in range(self.col_sample + 1):
|
||||
|
||||
self.weight[j] = (
|
||||
self.weight[j]
|
||||
+ self.learn_rate * (self.exit[i] - y) * self.sample[i][j]
|
||||
+ self.learning_rate
|
||||
* (self.target[i] - y)
|
||||
* self.sample[i][j]
|
||||
)
|
||||
erro = True
|
||||
has_misclassified = True
|
||||
# print('Epoch: \n',epoch_count)
|
||||
epoch_count = epoch_count + 1
|
||||
# if you want controle the epoch or just by erro
|
||||
if erro == False:
|
||||
if not has_misclassified:
|
||||
print(("\nEpoch:\n", epoch_count))
|
||||
print("------------------------\n")
|
||||
# if epoch_count > self.epoch_number or not erro:
|
||||
break
|
||||
|
||||
def sort(self, sample):
|
||||
def sort(self, sample) -> None:
|
||||
"""
|
||||
:param sample: example row to classify as P1 or P2
|
||||
:return: None
|
||||
>>> data = [[2.0149, 0.6192, 10.9263]]
|
||||
>>> targets = [-1]
|
||||
>>> perceptron = Perceptron(data,targets)
|
||||
>>> perceptron.training() # doctest:+ELLIPSIS
|
||||
('\\nEpoch:\\n', ...)
|
||||
...
|
||||
>>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS
|
||||
('Sample: ', ...)
|
||||
classification: P1
|
||||
|
||||
"""
|
||||
if len(self.sample) == 0:
|
||||
raise AttributeError("Sample data can not be empty")
|
||||
sample.insert(0, self.bias)
|
||||
u = 0
|
||||
for i in range(self.col_sample + 1):
|
||||
@ -74,7 +114,21 @@ class Perceptron:
|
||||
print(("Sample: ", sample))
|
||||
print("classification: P2")
|
||||
|
||||
def sign(self, u):
|
||||
def sign(self, u: float) -> int:
|
||||
"""
|
||||
threshold function for classification
|
||||
:param u: input number
|
||||
:return: 1 if the input is greater than 0, otherwise -1
|
||||
>>> data = [[0],[-0.5],[0.5]]
|
||||
>>> targets = [1,-1,1]
|
||||
>>> perceptron = Perceptron(data,targets)
|
||||
>>> perceptron.sign(0)
|
||||
1
|
||||
>>> perceptron.sign(-0.5)
|
||||
-1
|
||||
>>> perceptron.sign(0.5)
|
||||
1
|
||||
"""
|
||||
return 1 if u >= 0 else -1
|
||||
|
||||
|
||||
@ -144,15 +198,24 @@ exit = [
|
||||
1,
|
||||
]
|
||||
|
||||
network = Perceptron(
|
||||
sample=samples, exit=exit, learn_rate=0.01, epoch_number=1000, bias=-1
|
||||
)
|
||||
|
||||
network.training()
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
network = Perceptron(
|
||||
sample=samples, target=exit, learning_rate=0.01, epoch_number=1000, bias=-1
|
||||
)
|
||||
network.training()
|
||||
print("Finished training perceptron")
|
||||
print("Enter values to predict or q to exit")
|
||||
while True:
|
||||
sample = []
|
||||
for i in range(3):
|
||||
sample.insert(i, float(input("value: ")))
|
||||
for i in range(len(samples[0])):
|
||||
observation = input("value: ").strip()
|
||||
if observation == "q":
|
||||
break
|
||||
observation = float(observation)
|
||||
sample.insert(i, observation)
|
||||
network.sort(sample)
|
||||
|
Loading…
Reference in New Issue
Block a user