mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Modernize Python 2 code to get ready for Python 3
This commit is contained in:
parent
4e06949072
commit
e31c780d94
@ -85,7 +85,7 @@ def decode(ciphertext, key):
|
|||||||
plaintext = ""
|
plaintext = ""
|
||||||
|
|
||||||
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
|
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
|
||||||
for char1, char2 in chunk(ciphertext, 2):
|
for char1, char2 in chunker(ciphertext, 2):
|
||||||
row1, col1 = divmod(table.index(char1), 5)
|
row1, col1 = divmod(table.index(char1), 5)
|
||||||
row2, col2 = divmod(table.index(char2), 5)
|
row2, col2 = divmod(table.index(char2), 5)
|
||||||
|
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
'''
|
'''
|
||||||
A AVL tree
|
A AVL tree
|
||||||
'''
|
'''
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class Node:
|
class Node:
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
def printDist(dist, V):
|
def printDist(dist, V):
|
||||||
print("\nVertex Distance")
|
print("\nVertex Distance")
|
||||||
for i in range(V):
|
for i in range(V):
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
# Author: OMKAR PATHAK
|
# Author: OMKAR PATHAK
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class Graph():
|
class Graph():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
# Author: OMKAR PATHAK
|
# Author: OMKAR PATHAK
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class Graph():
|
class Graph():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
def printDist(dist, V):
|
def printDist(dist, V):
|
||||||
print("\nVertex Distance")
|
print("\nVertex Distance")
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
def printDist(dist, V):
|
def printDist(dist, V):
|
||||||
print("\nThe shortest path matrix using Floyd Warshall algorithm\n")
|
print("\nThe shortest path matrix using Floyd Warshall algorithm\n")
|
||||||
@ -7,7 +8,7 @@ def printDist(dist, V):
|
|||||||
print(int(dist[i][j]),end = "\t")
|
print(int(dist[i][j]),end = "\t")
|
||||||
else:
|
else:
|
||||||
print("INF",end="\t")
|
print("INF",end="\t")
|
||||||
print();
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -29,19 +30,19 @@ def FloydWarshall(graph, V):
|
|||||||
|
|
||||||
|
|
||||||
#MAIN
|
#MAIN
|
||||||
V = int(input("Enter number of vertices: "));
|
V = int(input("Enter number of vertices: "))
|
||||||
E = int(input("Enter number of edges: "));
|
E = int(input("Enter number of edges: "))
|
||||||
|
|
||||||
graph = [[float('inf') for i in range(V)] for j in range(V)]
|
graph = [[float('inf') for i in range(V)] for j in range(V)]
|
||||||
|
|
||||||
for i in range(V):
|
for i in range(V):
|
||||||
graph[i][i] = 0.0;
|
graph[i][i] = 0.0
|
||||||
|
|
||||||
for i in range(E):
|
for i in range(E):
|
||||||
print("\nEdge ",i+1)
|
print("\nEdge ",i+1)
|
||||||
src = int(input("Enter source:"))
|
src = int(input("Enter source:"))
|
||||||
dst = int(input("Enter destination:"))
|
dst = int(input("Enter destination:"))
|
||||||
weight = float(input("Enter weight:"))
|
weight = float(input("Enter weight:"))
|
||||||
graph[src][dst] = weight;
|
graph[src][dst] = weight
|
||||||
|
|
||||||
FloydWarshall(graph, V)
|
FloydWarshall(graph, V)
|
||||||
|
@ -1,3 +1,6 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class Graph:
|
class Graph:
|
||||||
def __init__(self, vertex):
|
def __init__(self, vertex):
|
||||||
self.vertex = vertex
|
self.vertex = vertex
|
||||||
|
@ -1,3 +1,6 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class Graph:
|
class Graph:
|
||||||
|
|
||||||
def __init__(self, vertex):
|
def __init__(self, vertex):
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
# Author: Shubham Malik
|
# Author: Shubham Malik
|
||||||
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
import math
|
import math
|
||||||
import sys
|
import sys
|
||||||
# For storing the vertex set to retreive node with the lowest distance
|
# For storing the vertex set to retreive node with the lowest distance
|
||||||
|
@ -3,6 +3,9 @@
|
|||||||
- This is an example of a double ended, doubly linked list.
|
- This is an example of a double ended, doubly linked list.
|
||||||
- Each link references the next link and the previous one.
|
- Each link references the next link and the previous one.
|
||||||
'''
|
'''
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class LinkedList:
|
class LinkedList:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.head = None
|
self.head = None
|
||||||
|
@ -7,6 +7,8 @@ This is a pure Python implementation of Dynamic Programming solution to the edit
|
|||||||
The problem is :
|
The problem is :
|
||||||
Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution.
|
Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution.
|
||||||
"""
|
"""
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class EditDistance:
|
class EditDistance:
|
||||||
"""
|
"""
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem.
|
This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem.
|
||||||
"""
|
"""
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
class Fibonacci:
|
class Fibonacci:
|
||||||
|
@ -46,6 +46,7 @@ Usage:
|
|||||||
5. Have fun..
|
5. Have fun..
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
from __future__ import print_function
|
||||||
from sklearn.metrics import pairwise_distances
|
from sklearn.metrics import pairwise_distances
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
@ -41,7 +41,7 @@ def rmse(predict, actual):
|
|||||||
actual = np.array(actual)
|
actual = np.array(actual)
|
||||||
|
|
||||||
difference = predict - actual
|
difference = predict - actual
|
||||||
square_diff = np.square(dfference)
|
square_diff = np.square(difference)
|
||||||
mean_square_diff = square_diff.mean()
|
mean_square_diff = square_diff.mean()
|
||||||
score = np.sqrt(mean_square_diff)
|
score = np.sqrt(mean_square_diff)
|
||||||
return score
|
return score
|
||||||
|
@ -2,6 +2,9 @@
|
|||||||
-The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
|
-The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
|
||||||
-Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
|
-Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
|
||||||
'''
|
'''
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
from math import sqrt
|
from math import sqrt
|
||||||
def SOE(n):
|
def SOE(n):
|
||||||
check = round(sqrt(n)) #Need not check for multiples past the square root of n
|
check = round(sqrt(n)) #Need not check for multiples past the square root of n
|
||||||
|
@ -1,4 +1,7 @@
|
|||||||
# Code contributed by Honey Sharma
|
# Code contributed by Honey Sharma
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
|
||||||
def cycle_sort(array):
|
def cycle_sort(array):
|
||||||
ans = 0
|
ans = 0
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user