Modernize Python 2 code to get ready for Python 3

This commit is contained in:
cclauss 2017-11-25 12:41:55 +01:00
parent 4e06949072
commit e31c780d94
17 changed files with 38 additions and 9 deletions

View File

@ -85,7 +85,7 @@ def decode(ciphertext, key):
plaintext = "" plaintext = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description # https://en.wikipedia.org/wiki/Playfair_cipher#Description
for char1, char2 in chunk(ciphertext, 2): for char1, char2 in chunker(ciphertext, 2):
row1, col1 = divmod(table.index(char1), 5) row1, col1 = divmod(table.index(char1), 5)
row2, col2 = divmod(table.index(char2), 5) row2, col2 = divmod(table.index(char2), 5)

View File

@ -1,6 +1,7 @@
''' '''
A AVL tree A AVL tree
''' '''
from __future__ import print_function
class Node: class Node:

View File

@ -1,3 +1,5 @@
from __future__ import print_function
def printDist(dist, V): def printDist(dist, V):
print("\nVertex Distance") print("\nVertex Distance")
for i in range(V): for i in range(V):

View File

@ -1,4 +1,6 @@
# Author: OMKAR PATHAK # Author: OMKAR PATHAK
from __future__ import print_function
class Graph(): class Graph():
def __init__(self): def __init__(self):

View File

@ -1,4 +1,6 @@
# Author: OMKAR PATHAK # Author: OMKAR PATHAK
from __future__ import print_function
class Graph(): class Graph():
def __init__(self): def __init__(self):

View File

@ -1,3 +1,4 @@
from __future__ import print_function
def printDist(dist, V): def printDist(dist, V):
print("\nVertex Distance") print("\nVertex Distance")

View File

@ -1,3 +1,4 @@
from __future__ import print_function
def printDist(dist, V): def printDist(dist, V):
print("\nThe shortest path matrix using Floyd Warshall algorithm\n") print("\nThe shortest path matrix using Floyd Warshall algorithm\n")
@ -7,7 +8,7 @@ def printDist(dist, V):
print(int(dist[i][j]),end = "\t") print(int(dist[i][j]),end = "\t")
else: else:
print("INF",end="\t") print("INF",end="\t")
print(); print()
@ -29,19 +30,19 @@ def FloydWarshall(graph, V):
#MAIN #MAIN
V = int(input("Enter number of vertices: ")); V = int(input("Enter number of vertices: "))
E = int(input("Enter number of edges: ")); E = int(input("Enter number of edges: "))
graph = [[float('inf') for i in range(V)] for j in range(V)] graph = [[float('inf') for i in range(V)] for j in range(V)]
for i in range(V): for i in range(V):
graph[i][i] = 0.0; graph[i][i] = 0.0
for i in range(E): for i in range(E):
print("\nEdge ",i+1) print("\nEdge ",i+1)
src = int(input("Enter source:")) src = int(input("Enter source:"))
dst = int(input("Enter destination:")) dst = int(input("Enter destination:"))
weight = float(input("Enter weight:")) weight = float(input("Enter weight:"))
graph[src][dst] = weight; graph[src][dst] = weight
FloydWarshall(graph, V) FloydWarshall(graph, V)

View File

@ -1,3 +1,6 @@
from __future__ import print_function
class Graph: class Graph:
def __init__(self, vertex): def __init__(self, vertex):
self.vertex = vertex self.vertex = vertex

View File

@ -1,3 +1,6 @@
from __future__ import print_function
class Graph: class Graph:
def __init__(self, vertex): def __init__(self, vertex):

View File

@ -2,6 +2,7 @@
# Author: Shubham Malik # Author: Shubham Malik
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm # References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
from __future__ import print_function
import math import math
import sys import sys
# For storing the vertex set to retreive node with the lowest distance # For storing the vertex set to retreive node with the lowest distance

View File

@ -3,6 +3,9 @@
- This is an example of a double ended, doubly linked list. - This is an example of a double ended, doubly linked list.
- Each link references the next link and the previous one. - Each link references the next link and the previous one.
''' '''
from __future__ import print_function
class LinkedList: class LinkedList:
def __init__(self): def __init__(self):
self.head = None self.head = None
@ -70,4 +73,4 @@ class Link:
def __init__(self, x): def __init__(self, x):
self.value = x self.value = x
def displayLink(self): def displayLink(self):
print("{}".format(self.value), end=" ") print("{}".format(self.value), end=" ")

View File

@ -7,6 +7,8 @@ This is a pure Python implementation of Dynamic Programming solution to the edit
The problem is : The problem is :
Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution. Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution.
""" """
from __future__ import print_function
class EditDistance: class EditDistance:
""" """

View File

@ -1,6 +1,7 @@
""" """
This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem. This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem.
""" """
from __future__ import print_function
class Fibonacci: class Fibonacci:

View File

@ -46,6 +46,7 @@ Usage:
5. Have fun.. 5. Have fun..
''' '''
from __future__ import print_function
from sklearn.metrics import pairwise_distances from sklearn.metrics import pairwise_distances
import numpy as np import numpy as np
@ -169,4 +170,4 @@ if False: # change to true to run this test case.
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0) initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400, centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
record_heterogeneity=heterogeneity, verbose=True) record_heterogeneity=heterogeneity, verbose=True)
plot_heterogeneity(heterogeneity, k) plot_heterogeneity(heterogeneity, k)

View File

@ -41,7 +41,7 @@ def rmse(predict, actual):
actual = np.array(actual) actual = np.array(actual)
difference = predict - actual difference = predict - actual
square_diff = np.square(dfference) square_diff = np.square(difference)
mean_square_diff = square_diff.mean() mean_square_diff = square_diff.mean()
score = np.sqrt(mean_square_diff) score = np.sqrt(mean_square_diff)
return score return score

View File

@ -2,6 +2,9 @@
-The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value. -The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
-Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif -Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
''' '''
from __future__ import print_function
from math import sqrt from math import sqrt
def SOE(n): def SOE(n):
check = round(sqrt(n)) #Need not check for multiples past the square root of n check = round(sqrt(n)) #Need not check for multiples past the square root of n

View File

@ -1,4 +1,7 @@
# Code contributed by Honey Sharma # Code contributed by Honey Sharma
from __future__ import print_function
def cycle_sort(array): def cycle_sort(array):
ans = 0 ans = 0