BST and RSA doctest (#8693)

* rsa key doctest

* move doctest to module docstring

* all tests to doctest

* moved is_right to property

* is right test

* fixed rsa doctest import

* Test error when deleting non-existing element

* fixing ruff EM102

* convert property 'is_right' to one-liner

Also use 'is' instead of '=='

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* child instead of children

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* remove type hint

* Update data_structures/binary_tree/binary_search_tree.py

---------

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
isidroas 2023-08-16 01:04:53 +02:00 committed by GitHub
parent cecf1fdd52
commit efaf526737
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 98 additions and 82 deletions

View File

@ -2,8 +2,7 @@ import os
import random import random
import sys import sys
from . import cryptomath_module as cryptoMath # noqa: N812 from . import cryptomath_module, rabin_miller
from . import rabin_miller as rabinMiller # noqa: N812
def main() -> None: def main() -> None:
@ -13,20 +12,26 @@ def main() -> None:
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]: def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
print("Generating prime p...") """
p = rabinMiller.generate_large_prime(key_size) >>> random.seed(0) # for repeatability
print("Generating prime q...") >>> public_key, private_key = generate_key(8)
q = rabinMiller.generate_large_prime(key_size) >>> public_key
(26569, 239)
>>> private_key
(26569, 2855)
"""
p = rabin_miller.generate_large_prime(key_size)
q = rabin_miller.generate_large_prime(key_size)
n = p * q n = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)...") # Generate e that is relatively prime to (p - 1) * (q - 1)
while True: while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size)) e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1: if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
break break
print("Calculating d that is mod inverse of e...") # Calculate d that is mod inverse of e
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1)) d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))
public_key = (n, e) public_key = (n, e)
private_key = (n, d) private_key = (n, d)

View File

@ -1,5 +1,62 @@
""" r"""
A binary search Tree A binary search Tree
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> t.remove(20)
Traceback (most recent call last):
...
ValueError: Value 20 not found
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
Other example:
>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> t = BinarySearchTree()
>>> for i in testlist:
... t.insert(i)
Prints all the elements of the list in order traversal
>>> print(t)
{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
Test existence
>>> t.search(6) is not None
True
>>> t.search(-1) is not None
False
>>> t.search(6).is_right
True
>>> t.search(1).is_right
False
>>> t.get_max().value
14
>>> t.get_min().value
1
>>> t.empty()
False
>>> for i in testlist:
... t.remove(i)
>>> t.empty()
True
""" """
from collections.abc import Iterable from collections.abc import Iterable
@ -20,6 +77,10 @@ class Node:
return str(self.value) return str(self.value)
return pformat({f"{self.value}": (self.left, self.right)}, indent=1) return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
@property
def is_right(self) -> bool:
return self.parent is not None and self is self.parent.right
class BinarySearchTree: class BinarySearchTree:
def __init__(self, root: Node | None = None): def __init__(self, root: Node | None = None):
@ -35,18 +96,13 @@ class BinarySearchTree:
if new_children is not None: # reset its kids if new_children is not None: # reset its kids
new_children.parent = node.parent new_children.parent = node.parent
if node.parent is not None: # reset its parent if node.parent is not None: # reset its parent
if self.is_right(node): # If it is the right children if node.is_right: # If it is the right child
node.parent.right = new_children node.parent.right = new_children
else: else:
node.parent.left = new_children node.parent.left = new_children
else: else:
self.root = new_children self.root = new_children
def is_right(self, node: Node) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False
def empty(self) -> bool: def empty(self) -> bool:
return self.root is None return self.root is None
@ -119,22 +175,26 @@ class BinarySearchTree:
return node return node
def remove(self, value: int) -> None: def remove(self, value: int) -> None:
node = self.search(value) # Look for the node with that label # Look for the node with that label
if node is not None: node = self.search(value)
if node.left is None and node.right is None: # If it has no children if node is None:
self.__reassign_nodes(node, None) msg = f"Value {value} not found"
elif node.left is None: # Has only right children raise ValueError(msg)
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, node.left) self.__reassign_nodes(node, None)
else: elif node.left is None: # Has only right children
tmp_node = self.get_max( self.__reassign_nodes(node, node.right)
node.left elif node.right is None: # Has only left children
) # Gets the max value of the left branch self.__reassign_nodes(node, node.left)
self.remove(tmp_node.value) # type: ignore else:
node.value = ( predecessor = self.get_max(
tmp_node.value # type: ignore node.left
) # Assigns the value to the node to delete and keep tree structure ) # Gets the max value of the left branch
self.remove(predecessor.value) # type: ignore
node.value = (
predecessor.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def preorder_traverse(self, node: Node | None) -> Iterable: def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None: if node is not None:
@ -177,55 +237,6 @@ def postorder(curr_node: Node | None) -> list[Node]:
return node_list return node_list
def binary_search_tree() -> None:
r"""
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
"""
testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
t = BinarySearchTree()
for i in testlist:
t.insert(i)
# Prints all the elements of the list in order traversal
print(t)
if t.search(6) is not None:
print("The value 6 exists")
else:
print("The value 6 doesn't exist")
if t.search(-1) is not None:
print("The value -1 exists")
else:
print("The value -1 doesn't exist")
if not t.empty():
print("Max Value: ", t.get_max().value) # type: ignore
print("Min Value: ", t.get_min().value) # type: ignore
for i in testlist:
t.remove(i)
print(t)
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest