mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
BST and RSA doctest (#8693)
* rsa key doctest * move doctest to module docstring * all tests to doctest * moved is_right to property * is right test * fixed rsa doctest import * Test error when deleting non-existing element * fixing ruff EM102 * convert property 'is_right' to one-liner Also use 'is' instead of '==' Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * child instead of children Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * remove type hint * Update data_structures/binary_tree/binary_search_tree.py --------- Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
cecf1fdd52
commit
efaf526737
@ -2,8 +2,7 @@ import os
|
|||||||
import random
|
import random
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
from . import cryptomath_module as cryptoMath # noqa: N812
|
from . import cryptomath_module, rabin_miller
|
||||||
from . import rabin_miller as rabinMiller # noqa: N812
|
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
def main() -> None:
|
||||||
@ -13,20 +12,26 @@ def main() -> None:
|
|||||||
|
|
||||||
|
|
||||||
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
|
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
|
||||||
print("Generating prime p...")
|
"""
|
||||||
p = rabinMiller.generate_large_prime(key_size)
|
>>> random.seed(0) # for repeatability
|
||||||
print("Generating prime q...")
|
>>> public_key, private_key = generate_key(8)
|
||||||
q = rabinMiller.generate_large_prime(key_size)
|
>>> public_key
|
||||||
|
(26569, 239)
|
||||||
|
>>> private_key
|
||||||
|
(26569, 2855)
|
||||||
|
"""
|
||||||
|
p = rabin_miller.generate_large_prime(key_size)
|
||||||
|
q = rabin_miller.generate_large_prime(key_size)
|
||||||
n = p * q
|
n = p * q
|
||||||
|
|
||||||
print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
|
# Generate e that is relatively prime to (p - 1) * (q - 1)
|
||||||
while True:
|
while True:
|
||||||
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
|
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
|
||||||
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
|
if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
|
||||||
break
|
break
|
||||||
|
|
||||||
print("Calculating d that is mod inverse of e...")
|
# Calculate d that is mod inverse of e
|
||||||
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
|
d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))
|
||||||
|
|
||||||
public_key = (n, e)
|
public_key = (n, e)
|
||||||
private_key = (n, d)
|
private_key = (n, d)
|
||||||
|
@ -1,5 +1,62 @@
|
|||||||
"""
|
r"""
|
||||||
A binary search Tree
|
A binary search Tree
|
||||||
|
|
||||||
|
Example
|
||||||
|
8
|
||||||
|
/ \
|
||||||
|
3 10
|
||||||
|
/ \ \
|
||||||
|
1 6 14
|
||||||
|
/ \ /
|
||||||
|
4 7 13
|
||||||
|
|
||||||
|
>>> t = BinarySearchTree()
|
||||||
|
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
|
||||||
|
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
|
||||||
|
8 3 1 6 4 7 10 14 13
|
||||||
|
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
|
||||||
|
1 4 7 6 3 13 14 10 8
|
||||||
|
>>> t.remove(20)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
ValueError: Value 20 not found
|
||||||
|
>>> BinarySearchTree().search(6)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
IndexError: Warning: Tree is empty! please use another.
|
||||||
|
|
||||||
|
Other example:
|
||||||
|
|
||||||
|
>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
|
||||||
|
>>> t = BinarySearchTree()
|
||||||
|
>>> for i in testlist:
|
||||||
|
... t.insert(i)
|
||||||
|
|
||||||
|
Prints all the elements of the list in order traversal
|
||||||
|
>>> print(t)
|
||||||
|
{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
|
||||||
|
|
||||||
|
Test existence
|
||||||
|
>>> t.search(6) is not None
|
||||||
|
True
|
||||||
|
>>> t.search(-1) is not None
|
||||||
|
False
|
||||||
|
|
||||||
|
>>> t.search(6).is_right
|
||||||
|
True
|
||||||
|
>>> t.search(1).is_right
|
||||||
|
False
|
||||||
|
|
||||||
|
>>> t.get_max().value
|
||||||
|
14
|
||||||
|
>>> t.get_min().value
|
||||||
|
1
|
||||||
|
>>> t.empty()
|
||||||
|
False
|
||||||
|
>>> for i in testlist:
|
||||||
|
... t.remove(i)
|
||||||
|
>>> t.empty()
|
||||||
|
True
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from collections.abc import Iterable
|
from collections.abc import Iterable
|
||||||
@ -20,6 +77,10 @@ class Node:
|
|||||||
return str(self.value)
|
return str(self.value)
|
||||||
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
|
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_right(self) -> bool:
|
||||||
|
return self.parent is not None and self is self.parent.right
|
||||||
|
|
||||||
|
|
||||||
class BinarySearchTree:
|
class BinarySearchTree:
|
||||||
def __init__(self, root: Node | None = None):
|
def __init__(self, root: Node | None = None):
|
||||||
@ -35,18 +96,13 @@ class BinarySearchTree:
|
|||||||
if new_children is not None: # reset its kids
|
if new_children is not None: # reset its kids
|
||||||
new_children.parent = node.parent
|
new_children.parent = node.parent
|
||||||
if node.parent is not None: # reset its parent
|
if node.parent is not None: # reset its parent
|
||||||
if self.is_right(node): # If it is the right children
|
if node.is_right: # If it is the right child
|
||||||
node.parent.right = new_children
|
node.parent.right = new_children
|
||||||
else:
|
else:
|
||||||
node.parent.left = new_children
|
node.parent.left = new_children
|
||||||
else:
|
else:
|
||||||
self.root = new_children
|
self.root = new_children
|
||||||
|
|
||||||
def is_right(self, node: Node) -> bool:
|
|
||||||
if node.parent and node.parent.right:
|
|
||||||
return node == node.parent.right
|
|
||||||
return False
|
|
||||||
|
|
||||||
def empty(self) -> bool:
|
def empty(self) -> bool:
|
||||||
return self.root is None
|
return self.root is None
|
||||||
|
|
||||||
@ -119,22 +175,26 @@ class BinarySearchTree:
|
|||||||
return node
|
return node
|
||||||
|
|
||||||
def remove(self, value: int) -> None:
|
def remove(self, value: int) -> None:
|
||||||
node = self.search(value) # Look for the node with that label
|
# Look for the node with that label
|
||||||
if node is not None:
|
node = self.search(value)
|
||||||
if node.left is None and node.right is None: # If it has no children
|
if node is None:
|
||||||
self.__reassign_nodes(node, None)
|
msg = f"Value {value} not found"
|
||||||
elif node.left is None: # Has only right children
|
raise ValueError(msg)
|
||||||
self.__reassign_nodes(node, node.right)
|
|
||||||
elif node.right is None: # Has only left children
|
if node.left is None and node.right is None: # If it has no children
|
||||||
self.__reassign_nodes(node, node.left)
|
self.__reassign_nodes(node, None)
|
||||||
else:
|
elif node.left is None: # Has only right children
|
||||||
tmp_node = self.get_max(
|
self.__reassign_nodes(node, node.right)
|
||||||
node.left
|
elif node.right is None: # Has only left children
|
||||||
) # Gets the max value of the left branch
|
self.__reassign_nodes(node, node.left)
|
||||||
self.remove(tmp_node.value) # type: ignore
|
else:
|
||||||
node.value = (
|
predecessor = self.get_max(
|
||||||
tmp_node.value # type: ignore
|
node.left
|
||||||
) # Assigns the value to the node to delete and keep tree structure
|
) # Gets the max value of the left branch
|
||||||
|
self.remove(predecessor.value) # type: ignore
|
||||||
|
node.value = (
|
||||||
|
predecessor.value # type: ignore
|
||||||
|
) # Assigns the value to the node to delete and keep tree structure
|
||||||
|
|
||||||
def preorder_traverse(self, node: Node | None) -> Iterable:
|
def preorder_traverse(self, node: Node | None) -> Iterable:
|
||||||
if node is not None:
|
if node is not None:
|
||||||
@ -177,55 +237,6 @@ def postorder(curr_node: Node | None) -> list[Node]:
|
|||||||
return node_list
|
return node_list
|
||||||
|
|
||||||
|
|
||||||
def binary_search_tree() -> None:
|
|
||||||
r"""
|
|
||||||
Example
|
|
||||||
8
|
|
||||||
/ \
|
|
||||||
3 10
|
|
||||||
/ \ \
|
|
||||||
1 6 14
|
|
||||||
/ \ /
|
|
||||||
4 7 13
|
|
||||||
|
|
||||||
>>> t = BinarySearchTree()
|
|
||||||
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
|
|
||||||
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
|
|
||||||
8 3 1 6 4 7 10 14 13
|
|
||||||
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
|
|
||||||
1 4 7 6 3 13 14 10 8
|
|
||||||
>>> BinarySearchTree().search(6)
|
|
||||||
Traceback (most recent call last):
|
|
||||||
...
|
|
||||||
IndexError: Warning: Tree is empty! please use another.
|
|
||||||
"""
|
|
||||||
testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
|
|
||||||
t = BinarySearchTree()
|
|
||||||
for i in testlist:
|
|
||||||
t.insert(i)
|
|
||||||
|
|
||||||
# Prints all the elements of the list in order traversal
|
|
||||||
print(t)
|
|
||||||
|
|
||||||
if t.search(6) is not None:
|
|
||||||
print("The value 6 exists")
|
|
||||||
else:
|
|
||||||
print("The value 6 doesn't exist")
|
|
||||||
|
|
||||||
if t.search(-1) is not None:
|
|
||||||
print("The value -1 exists")
|
|
||||||
else:
|
|
||||||
print("The value -1 doesn't exist")
|
|
||||||
|
|
||||||
if not t.empty():
|
|
||||||
print("Max Value: ", t.get_max().value) # type: ignore
|
|
||||||
print("Min Value: ", t.get_min().value) # type: ignore
|
|
||||||
|
|
||||||
for i in testlist:
|
|
||||||
t.remove(i)
|
|
||||||
print(t)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import doctest
|
import doctest
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user