Add new algorithm for Armstrong numbers (#4474)

* Add a new algorithm for Armstrong numbers

* FAILING = (-153, -1, 0, 1.2, 200, "A", [], {}, None)

Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Anderson Torres 2021-06-04 17:28:26 -03:00 committed by GitHub
parent 40e357f688
commit f37d415227
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,26 +1,24 @@
"""
An Armstrong number is equal to the sum of its own digits each raised
to the power of the number of digits.
An Armstrong number is equal to the sum of its own digits each raised to the
power of the number of digits.
For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.
An Armstrong number is often called Narcissistic number.
Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
"""
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
FAILING = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
def armstrong_number(n: int) -> bool:
"""
Return True if n is an Armstrong number or False if it is not.
>>> armstrong_number(153)
>>> all(armstrong_number(n) for n in PASSING)
True
>>> armstrong_number(200)
False
>>> armstrong_number(1634)
True
>>> armstrong_number(0)
False
>>> armstrong_number(-1)
False
>>> armstrong_number(1.2)
>>> any(armstrong_number(n) for n in FAILING)
False
"""
if not isinstance(n, int) or n < 1:
@ -43,15 +41,46 @@ def armstrong_number(n: int) -> bool:
return n == sum
def pluperfect_number(n: int) -> bool:
"""Return True if n is a pluperfect number or False if it is not
>>> all(armstrong_number(n) for n in PASSING)
True
>>> any(armstrong_number(n) for n in FAILING)
False
"""
if not isinstance(n, int) or n < 1:
return False
# Init a "histogram" of the digits
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
digit_total = 0
sum = 0
temp = n
while temp > 0:
temp, rem = divmod(temp, 10)
digit_histogram[rem] += 1
digit_total += 1
for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))):
sum += cnt * i ** digit_total
return n == sum
def narcissistic_number(n: int) -> bool:
"""Return True if n is a narcissistic number or False if it is not"""
"""Return True if n is a narcissistic number or False if it is not.
expo = len(str(n)) # power, all number will be raised to
# each digit will be multiplied expo times
temp = [(int(i) ** expo) for i in str(n)]
# check if sum of cube of each digit is equal to number
return n == sum(temp)
>>> all(armstrong_number(n) for n in PASSING)
True
>>> any(armstrong_number(n) for n in FAILING)
False
"""
if not isinstance(n, int) or n < 1:
return False
expo = len(str(n)) # the power that all digits will be raised to
# check if sum of each digit multiplied expo times is equal to number
return n == sum(int(i) ** expo for i in str(n))
def main():
@ -61,6 +90,7 @@ def main():
num = int(input("Enter an integer to see if it is an Armstrong number: ").strip())
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.")
print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
if __name__ == "__main__":