mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add new algorithm for Armstrong numbers (#4474)
* Add a new algorithm for Armstrong numbers * FAILING = (-153, -1, 0, 1.2, 200, "A", [], {}, None) Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
40e357f688
commit
f37d415227
@ -1,26 +1,24 @@
|
||||
"""
|
||||
An Armstrong number is equal to the sum of its own digits each raised
|
||||
to the power of the number of digits.
|
||||
An Armstrong number is equal to the sum of its own digits each raised to the
|
||||
power of the number of digits.
|
||||
|
||||
For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.
|
||||
An Armstrong number is often called Narcissistic number.
|
||||
|
||||
Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
|
||||
|
||||
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
|
||||
"""
|
||||
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
|
||||
FAILING = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
|
||||
|
||||
|
||||
def armstrong_number(n: int) -> bool:
|
||||
"""
|
||||
Return True if n is an Armstrong number or False if it is not.
|
||||
|
||||
>>> armstrong_number(153)
|
||||
>>> all(armstrong_number(n) for n in PASSING)
|
||||
True
|
||||
>>> armstrong_number(200)
|
||||
False
|
||||
>>> armstrong_number(1634)
|
||||
True
|
||||
>>> armstrong_number(0)
|
||||
False
|
||||
>>> armstrong_number(-1)
|
||||
False
|
||||
>>> armstrong_number(1.2)
|
||||
>>> any(armstrong_number(n) for n in FAILING)
|
||||
False
|
||||
"""
|
||||
if not isinstance(n, int) or n < 1:
|
||||
@ -43,15 +41,46 @@ def armstrong_number(n: int) -> bool:
|
||||
return n == sum
|
||||
|
||||
|
||||
def pluperfect_number(n: int) -> bool:
|
||||
"""Return True if n is a pluperfect number or False if it is not
|
||||
|
||||
>>> all(armstrong_number(n) for n in PASSING)
|
||||
True
|
||||
>>> any(armstrong_number(n) for n in FAILING)
|
||||
False
|
||||
"""
|
||||
if not isinstance(n, int) or n < 1:
|
||||
return False
|
||||
|
||||
# Init a "histogram" of the digits
|
||||
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
digit_total = 0
|
||||
sum = 0
|
||||
temp = n
|
||||
while temp > 0:
|
||||
temp, rem = divmod(temp, 10)
|
||||
digit_histogram[rem] += 1
|
||||
digit_total += 1
|
||||
|
||||
for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))):
|
||||
sum += cnt * i ** digit_total
|
||||
|
||||
return n == sum
|
||||
|
||||
|
||||
def narcissistic_number(n: int) -> bool:
|
||||
"""Return True if n is a narcissistic number or False if it is not"""
|
||||
"""Return True if n is a narcissistic number or False if it is not.
|
||||
|
||||
expo = len(str(n)) # power, all number will be raised to
|
||||
# each digit will be multiplied expo times
|
||||
temp = [(int(i) ** expo) for i in str(n)]
|
||||
|
||||
# check if sum of cube of each digit is equal to number
|
||||
return n == sum(temp)
|
||||
>>> all(armstrong_number(n) for n in PASSING)
|
||||
True
|
||||
>>> any(armstrong_number(n) for n in FAILING)
|
||||
False
|
||||
"""
|
||||
if not isinstance(n, int) or n < 1:
|
||||
return False
|
||||
expo = len(str(n)) # the power that all digits will be raised to
|
||||
# check if sum of each digit multiplied expo times is equal to number
|
||||
return n == sum(int(i) ** expo for i in str(n))
|
||||
|
||||
|
||||
def main():
|
||||
@ -61,6 +90,7 @@ def main():
|
||||
num = int(input("Enter an integer to see if it is an Armstrong number: ").strip())
|
||||
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
|
||||
print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.")
|
||||
print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user