From f37d415227a21017398144a090a66f1c690705eb Mon Sep 17 00:00:00 2001 From: Anderson Torres Date: Fri, 4 Jun 2021 17:28:26 -0300 Subject: [PATCH] Add new algorithm for Armstrong numbers (#4474) * Add a new algorithm for Armstrong numbers * FAILING = (-153, -1, 0, 1.2, 200, "A", [], {}, None) Co-authored-by: Christian Clauss --- maths/armstrong_numbers.py | 70 +++++++++++++++++++++++++++----------- 1 file changed, 50 insertions(+), 20 deletions(-) diff --git a/maths/armstrong_numbers.py b/maths/armstrong_numbers.py index af25688db..ce8c62182 100644 --- a/maths/armstrong_numbers.py +++ b/maths/armstrong_numbers.py @@ -1,26 +1,24 @@ """ -An Armstrong number is equal to the sum of its own digits each raised -to the power of the number of digits. +An Armstrong number is equal to the sum of its own digits each raised to the +power of the number of digits. + For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370. -An Armstrong number is often called Narcissistic number. + +Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers. + +On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188 """ +PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401) +FAILING = (-153, -1, 0, 1.2, 200, "A", [], {}, None) def armstrong_number(n: int) -> bool: """ Return True if n is an Armstrong number or False if it is not. - >>> armstrong_number(153) + >>> all(armstrong_number(n) for n in PASSING) True - >>> armstrong_number(200) - False - >>> armstrong_number(1634) - True - >>> armstrong_number(0) - False - >>> armstrong_number(-1) - False - >>> armstrong_number(1.2) + >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: @@ -43,15 +41,46 @@ def armstrong_number(n: int) -> bool: return n == sum +def pluperfect_number(n: int) -> bool: + """Return True if n is a pluperfect number or False if it is not + + >>> all(armstrong_number(n) for n in PASSING) + True + >>> any(armstrong_number(n) for n in FAILING) + False + """ + if not isinstance(n, int) or n < 1: + return False + + # Init a "histogram" of the digits + digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + digit_total = 0 + sum = 0 + temp = n + while temp > 0: + temp, rem = divmod(temp, 10) + digit_histogram[rem] += 1 + digit_total += 1 + + for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))): + sum += cnt * i ** digit_total + + return n == sum + + def narcissistic_number(n: int) -> bool: - """Return True if n is a narcissistic number or False if it is not""" + """Return True if n is a narcissistic number or False if it is not. - expo = len(str(n)) # power, all number will be raised to - # each digit will be multiplied expo times - temp = [(int(i) ** expo) for i in str(n)] - - # check if sum of cube of each digit is equal to number - return n == sum(temp) + >>> all(armstrong_number(n) for n in PASSING) + True + >>> any(armstrong_number(n) for n in FAILING) + False + """ + if not isinstance(n, int) or n < 1: + return False + expo = len(str(n)) # the power that all digits will be raised to + # check if sum of each digit multiplied expo times is equal to number + return n == sum(int(i) ** expo for i in str(n)) def main(): @@ -61,6 +90,7 @@ def main(): num = int(input("Enter an integer to see if it is an Armstrong number: ").strip()) print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.") + print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.") if __name__ == "__main__":