mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Added sudoku solving program in backtracking algorithms (#1128)
* Added sudoku solver in backtracking * Added sudoku solver program * Added sudoku solver * Added sudoku solver * Format with black, add doctests, cleanup main
This commit is contained in:
parent
dc2b575274
commit
f3c0b132bc
151
backtracking/sudoku.py
Normal file
151
backtracking/sudoku.py
Normal file
@ -0,0 +1,151 @@
|
||||
"""
|
||||
|
||||
Given a partially filled 9×9 2D array, the objective is to fill a 9×9
|
||||
square grid with digits numbered 1 to 9, so that every row, column, and
|
||||
and each of the nine 3×3 sub-grids contains all of the digits.
|
||||
|
||||
This can be solved using Backtracking and is similar to n-queens.
|
||||
We check to see if a cell is safe or not and recursively call the
|
||||
function on the next column to see if it returns True. if yes, we
|
||||
have solved the puzzle. else, we backtrack and place another number
|
||||
in that cell and repeat this process.
|
||||
|
||||
"""
|
||||
|
||||
# assigning initial values to the grid
|
||||
initial_grid = [
|
||||
[3, 0, 6, 5, 0, 8, 4, 0, 0],
|
||||
[5, 2, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 8, 7, 0, 0, 0, 0, 3, 1],
|
||||
[0, 0, 3, 0, 1, 0, 0, 8, 0],
|
||||
[9, 0, 0, 8, 6, 3, 0, 0, 5],
|
||||
[0, 5, 0, 0, 9, 0, 6, 0, 0],
|
||||
[1, 3, 0, 0, 0, 0, 2, 5, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 7, 4],
|
||||
[0, 0, 5, 2, 0, 6, 3, 0, 0],
|
||||
]
|
||||
# a grid with no solution
|
||||
no_solution = [
|
||||
[5, 0, 6, 5, 0, 8, 4, 0, 3],
|
||||
[5, 2, 0, 0, 0, 0, 0, 0, 2],
|
||||
[1, 8, 7, 0, 0, 0, 0, 3, 1],
|
||||
[0, 0, 3, 0, 1, 0, 0, 8, 0],
|
||||
[9, 0, 0, 8, 6, 3, 0, 0, 5],
|
||||
[0, 5, 0, 0, 9, 0, 6, 0, 0],
|
||||
[1, 3, 0, 0, 0, 0, 2, 5, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 7, 4],
|
||||
[0, 0, 5, 2, 0, 6, 3, 0, 0],
|
||||
]
|
||||
|
||||
|
||||
def is_safe(grid, row, column, n):
|
||||
"""
|
||||
This function checks the grid to see if each row,
|
||||
column, and the 3x3 subgrids contain the digit 'n'.
|
||||
It returns False if it is not 'safe' (a duplicate digit
|
||||
is found) else returns True if it is 'safe'
|
||||
|
||||
"""
|
||||
|
||||
for i in range(9):
|
||||
if grid[row][i] == n or grid[i][column] == n:
|
||||
return False
|
||||
|
||||
for i in range(3):
|
||||
for j in range(3):
|
||||
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def is_completed(grid):
|
||||
"""
|
||||
This function checks if the puzzle is completed or not.
|
||||
it is completed when all the cells are assigned with a number(not zero)
|
||||
and There is no repeating number in any column, row or 3x3 subgrid.
|
||||
|
||||
"""
|
||||
|
||||
for row in grid:
|
||||
for cell in row:
|
||||
if cell == 0:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def find_empty_location(grid):
|
||||
"""
|
||||
This function finds an empty location so that we can assign a number
|
||||
for that particular row and column.
|
||||
|
||||
"""
|
||||
|
||||
for i in range(9):
|
||||
for j in range(9):
|
||||
if grid[i][j] == 0:
|
||||
return i, j
|
||||
|
||||
|
||||
def sudoku(grid):
|
||||
"""
|
||||
Takes a partially filled-in grid and attempts to assign values to
|
||||
all unassigned locations in such a way to meet the requirements
|
||||
for Sudoku solution (non-duplication across rows, columns, and boxes)
|
||||
|
||||
>>> sudoku(initial_grid) # doctest: +NORMALIZE_WHITESPACE
|
||||
[[3, 1, 6, 5, 7, 8, 4, 9, 2],
|
||||
[5, 2, 9, 1, 3, 4, 7, 6, 8],
|
||||
[4, 8, 7, 6, 2, 9, 5, 3, 1],
|
||||
[2, 6, 3, 4, 1, 5, 9, 8, 7],
|
||||
[9, 7, 4, 8, 6, 3, 1, 2, 5],
|
||||
[8, 5, 1, 7, 9, 2, 6, 4, 3],
|
||||
[1, 3, 8, 9, 4, 7, 2, 5, 6],
|
||||
[6, 9, 2, 3, 5, 1, 8, 7, 4],
|
||||
[7, 4, 5, 2, 8, 6, 3, 1, 9]]
|
||||
>>> sudoku(no_solution)
|
||||
False
|
||||
"""
|
||||
|
||||
if is_completed(grid):
|
||||
return grid
|
||||
|
||||
row, column = find_empty_location(grid)
|
||||
|
||||
for digit in range(1, 10):
|
||||
if is_safe(grid, row, column, digit):
|
||||
grid[row][column] = digit
|
||||
|
||||
if sudoku(grid):
|
||||
return grid
|
||||
|
||||
grid[row][column] = 0
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def print_solution(grid):
|
||||
"""
|
||||
A function to print the solution in the form
|
||||
of a 9x9 grid
|
||||
|
||||
"""
|
||||
|
||||
for row in grid:
|
||||
for cell in row:
|
||||
print(cell, end=" ")
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# make a copy of grid so that you can compare with the unmodified grid
|
||||
for grid in (initial_grid, no_solution):
|
||||
grid = list(map(list, grid))
|
||||
solution = sudoku(grid)
|
||||
if solution:
|
||||
print("grid after solving:")
|
||||
print_solution(solution)
|
||||
else:
|
||||
print("Cannot find a solution.")
|
Loading…
Reference in New Issue
Block a user