mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Added Random Forest Regressor and tested with flake8 (#1733)
* Added Random Forest Regressor * Updated file to standard
This commit is contained in:
parent
1608d75351
commit
f52b97f2c5
42
machine_learning/random_forest_regressor.py
Normal file
42
machine_learning/random_forest_regressor.py
Normal file
@ -0,0 +1,42 @@
|
||||
# Random Forest Regressor Example
|
||||
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.metrics import mean_absolute_error
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
"""
|
||||
Random Tree Regressor Example using sklearn function.
|
||||
Boston house price dataset is used to demonstrate algorithm.
|
||||
"""
|
||||
|
||||
# Load Boston house price dataset
|
||||
boston = load_boston()
|
||||
print(boston.keys())
|
||||
|
||||
# Split dataset into train and test data
|
||||
X = boston["data"] # features
|
||||
Y = boston["target"]
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size=0.3, random_state=1
|
||||
)
|
||||
|
||||
# Random Forest Regressor
|
||||
rand_for = RandomForestRegressor(random_state=42, n_estimators=300)
|
||||
rand_for.fit(x_train, y_train)
|
||||
|
||||
# Predict target for test data
|
||||
predictions = rand_for.predict(x_test)
|
||||
predictions = predictions.reshape(len(predictions), 1)
|
||||
|
||||
# Error printing
|
||||
print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}")
|
||||
print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user