mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Reduce the complexity of boolean_algebra/quine_mc_cluskey.py (#8604)
* Reduce the complexity of boolean_algebra/quine_mc_cluskey.py * updating DIRECTORY.md * Fix * Fix review issues * Fix * Fix review issues --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
efaf526737
commit
f66568e981
@ -74,10 +74,7 @@ def is_for_table(string1: str, string2: str, count: int) -> bool:
|
||||
"""
|
||||
list1 = list(string1)
|
||||
list2 = list(string2)
|
||||
count_n = 0
|
||||
for i in range(len(list1)):
|
||||
if list1[i] != list2[i]:
|
||||
count_n += 1
|
||||
count_n = sum(item1 != item2 for item1, item2 in zip(list1, list2))
|
||||
return count_n == count
|
||||
|
||||
|
||||
@ -92,40 +89,34 @@ def selection(chart: list[list[int]], prime_implicants: list[str]) -> list[str]:
|
||||
temp = []
|
||||
select = [0] * len(chart)
|
||||
for i in range(len(chart[0])):
|
||||
count = 0
|
||||
rem = -1
|
||||
for j in range(len(chart)):
|
||||
if chart[j][i] == 1:
|
||||
count += 1
|
||||
rem = j
|
||||
count = sum(row[i] == 1 for row in chart)
|
||||
if count == 1:
|
||||
rem = max(j for j, row in enumerate(chart) if row[i] == 1)
|
||||
select[rem] = 1
|
||||
for i in range(len(select)):
|
||||
if select[i] == 1:
|
||||
for j in range(len(chart[0])):
|
||||
if chart[i][j] == 1:
|
||||
for k in range(len(chart)):
|
||||
chart[k][j] = 0
|
||||
temp.append(prime_implicants[i])
|
||||
for i, item in enumerate(select):
|
||||
if item != 1:
|
||||
continue
|
||||
for j in range(len(chart[0])):
|
||||
if chart[i][j] != 1:
|
||||
continue
|
||||
for row in chart:
|
||||
row[j] = 0
|
||||
temp.append(prime_implicants[i])
|
||||
while True:
|
||||
max_n = 0
|
||||
rem = -1
|
||||
count_n = 0
|
||||
for i in range(len(chart)):
|
||||
count_n = chart[i].count(1)
|
||||
if count_n > max_n:
|
||||
max_n = count_n
|
||||
rem = i
|
||||
counts = [chart[i].count(1) for i in range(len(chart))]
|
||||
max_n = max(counts)
|
||||
rem = counts.index(max_n)
|
||||
|
||||
if max_n == 0:
|
||||
return temp
|
||||
|
||||
temp.append(prime_implicants[rem])
|
||||
|
||||
for i in range(len(chart[0])):
|
||||
if chart[rem][i] == 1:
|
||||
for j in range(len(chart)):
|
||||
chart[j][i] = 0
|
||||
for j in range(len(chart[0])):
|
||||
if chart[rem][j] != 1:
|
||||
continue
|
||||
for i in range(len(chart)):
|
||||
chart[i][j] = 0
|
||||
|
||||
|
||||
def prime_implicant_chart(
|
||||
|
Loading…
Reference in New Issue
Block a user