Euler problem 551 sol 1: Reduce McCabe code complexity (#2141)

* Euler problem 551 sol 1: Reduce McCabe code complexity

As discussed in #2128

* fixup! Format Python code with psf/black push

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss 2020-06-22 14:16:12 +02:00 committed by GitHub
parent d034add61f
commit fdc5bee7af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 15 additions and 18 deletions

View File

@ -4,12 +4,12 @@ from typing import List, Tuple
def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]: def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]:
''' """
Find all the valid positions a knight can move to from the current position. Find all the valid positions a knight can move to from the current position.
>>> get_valid_pos((1, 3), 4) >>> get_valid_pos((1, 3), 4)
[(2, 1), (0, 1), (3, 2)] [(2, 1), (0, 1), (3, 2)]
''' """
y, x = position y, x = position
positions = [ positions = [
@ -20,7 +20,7 @@ def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]:
(y + 2, x + 1), (y + 2, x + 1),
(y + 2, x - 1), (y + 2, x - 1),
(y - 2, x + 1), (y - 2, x + 1),
(y - 2, x - 1) (y - 2, x - 1),
] ]
permissible_positions = [] permissible_positions = []
@ -33,7 +33,7 @@ def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]:
def is_complete(board: List[List[int]]) -> bool: def is_complete(board: List[List[int]]) -> bool:
''' """
Check if the board (matrix) has been completely filled with non-zero values. Check if the board (matrix) has been completely filled with non-zero values.
>>> is_complete([[1]]) >>> is_complete([[1]])
@ -41,15 +41,15 @@ def is_complete(board: List[List[int]]) -> bool:
>>> is_complete([[1, 2], [3, 0]]) >>> is_complete([[1, 2], [3, 0]])
False False
''' """
return not any(elem == 0 for row in board for elem in row) return not any(elem == 0 for row in board for elem in row)
def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int) -> bool: def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int) -> bool:
''' """
Helper function to solve knight tour problem. Helper function to solve knight tour problem.
''' """
if is_complete(board): if is_complete(board):
return True return True
@ -67,7 +67,7 @@ def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int)
def open_knight_tour(n: int) -> List[List[int]]: def open_knight_tour(n: int) -> List[List[int]]:
''' """
Find the solution for the knight tour problem for a board of size n. Raises Find the solution for the knight tour problem for a board of size n. Raises
ValueError if the tour cannot be performed for the given size. ValueError if the tour cannot be performed for the given size.
@ -78,7 +78,7 @@ def open_knight_tour(n: int) -> List[List[int]]:
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Open Kight Tour cannot be performed on a board of size 2 ValueError: Open Kight Tour cannot be performed on a board of size 2
''' """
board = [[0 for i in range(n)] for j in range(n)] board = [[0 for i in range(n)] for j in range(n)]

View File

@ -4,7 +4,7 @@ from typing import List
def maximum_non_adjacent_sum(nums: List[int]) -> int: def maximum_non_adjacent_sum(nums: List[int]) -> int:
''' """
Find the maximum non-adjacent sum of the integers in the nums input list Find the maximum non-adjacent sum of the integers in the nums input list
>>> print(maximum_non_adjacent_sum([1, 2, 3])) >>> print(maximum_non_adjacent_sum([1, 2, 3]))
@ -15,14 +15,15 @@ def maximum_non_adjacent_sum(nums: List[int]) -> int:
0 0
>>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6]) >>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6])
500 500
''' """
if not nums: if not nums:
return 0 return 0
max_including = nums[0] max_including = nums[0]
max_excluding = 0 max_excluding = 0
for num in nums[1:]: for num in nums[1:]:
max_including, max_excluding = ( max_including, max_excluding = (
max_excluding + num, max(max_including, max_excluding) max_excluding + num,
max(max_including, max_excluding),
) )
return max(max_excluding, max_including) return max(max_excluding, max_including)

View File

@ -40,12 +40,8 @@ def next_term(a_i, k, i, n):
ending term is a_10=62, then (61, 9) is returned. ending term is a_10=62, then (61, 9) is returned.
""" """
# ds_b - digitsum(b) # ds_b - digitsum(b)
ds_b = 0 ds_b = sum(a_i[j] for j in range(k, len(a_i)))
for j in range(k, len(a_i)): c = sum(a_i[j] * base[j] for j in range(min(len(a_i), k)))
ds_b += a_i[j]
c = 0
for j in range(min(len(a_i), k)):
c += a_i[j] * base[j]
diff, dn = 0, 0 diff, dn = 0, 0
max_dn = n - i max_dn = n - i