mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Create combination_sum_iv.py (#7672)
* Create combination_sum_iv.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dynamic_programming/combination_sum_iv.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * Update dynamic_programming/combination_sum_iv.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * Update dynamic_programming/combination_sum_iv.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update combination_sum_iv.py * Update combination_sum_iv.py * Resolved PR Comments * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * minor change, argument missing in function * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dynamic_programming/combination_sum_iv.py Co-authored-by: Christian Clauss <cclauss@me.com> * minor change Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
528b129019
commit
fe5819c872
102
dynamic_programming/combination_sum_iv.py
Normal file
102
dynamic_programming/combination_sum_iv.py
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
"""
|
||||||
|
Question:
|
||||||
|
You are given an array of distinct integers and you have to tell how many
|
||||||
|
different ways of selecting the elements from the array are there such that
|
||||||
|
the sum of chosen elements is equal to the target number tar.
|
||||||
|
|
||||||
|
Example
|
||||||
|
|
||||||
|
Input:
|
||||||
|
N = 3
|
||||||
|
target = 5
|
||||||
|
array = [1, 2, 5]
|
||||||
|
|
||||||
|
Output:
|
||||||
|
9
|
||||||
|
|
||||||
|
Approach:
|
||||||
|
The basic idea is to go over recursively to find the way such that the sum
|
||||||
|
of chosen elements is “tar”. For every element, we have two choices
|
||||||
|
1. Include the element in our set of chosen elements.
|
||||||
|
2. Don’t include the element in our set of chosen elements.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def combination_sum_iv(n: int, array: list[int], target: int) -> int:
|
||||||
|
"""
|
||||||
|
Function checks the all possible combinations, and returns the count
|
||||||
|
of possible combination in exponential Time Complexity.
|
||||||
|
|
||||||
|
>>> combination_sum_iv(3, [1,2,5], 5)
|
||||||
|
9
|
||||||
|
"""
|
||||||
|
|
||||||
|
def count_of_possible_combinations(target: int) -> int:
|
||||||
|
if target < 0:
|
||||||
|
return 0
|
||||||
|
if target == 0:
|
||||||
|
return 1
|
||||||
|
return sum(count_of_possible_combinations(target - item) for item in array)
|
||||||
|
|
||||||
|
return count_of_possible_combinations(target)
|
||||||
|
|
||||||
|
|
||||||
|
def combination_sum_iv_dp_array(n: int, array: list[int], target: int) -> int:
|
||||||
|
"""
|
||||||
|
Function checks the all possible combinations, and returns the count
|
||||||
|
of possible combination in O(N^2) Time Complexity as we are using Dynamic
|
||||||
|
programming array here.
|
||||||
|
|
||||||
|
>>> combination_sum_iv_dp_array(3, [1,2,5], 5)
|
||||||
|
9
|
||||||
|
"""
|
||||||
|
|
||||||
|
def count_of_possible_combinations_with_dp_array(
|
||||||
|
target: int, dp_array: list[int]
|
||||||
|
) -> int:
|
||||||
|
if target < 0:
|
||||||
|
return 0
|
||||||
|
if target == 0:
|
||||||
|
return 1
|
||||||
|
if dp_array[target] != -1:
|
||||||
|
return dp_array[target]
|
||||||
|
answer = sum(
|
||||||
|
count_of_possible_combinations_with_dp_array(target - item, dp_array)
|
||||||
|
for item in array
|
||||||
|
)
|
||||||
|
dp_array[target] = answer
|
||||||
|
return answer
|
||||||
|
|
||||||
|
dp_array = [-1] * (target + 1)
|
||||||
|
return count_of_possible_combinations_with_dp_array(target, dp_array)
|
||||||
|
|
||||||
|
|
||||||
|
def combination_sum_iv_bottom_up(n: int, array: list[int], target: int) -> int:
|
||||||
|
"""
|
||||||
|
Function checks the all possible combinations with using bottom up approach,
|
||||||
|
and returns the count of possible combination in O(N^2) Time Complexity
|
||||||
|
as we are using Dynamic programming array here.
|
||||||
|
|
||||||
|
>>> combination_sum_iv_bottom_up(3, [1,2,5], 5)
|
||||||
|
9
|
||||||
|
"""
|
||||||
|
|
||||||
|
dp_array = [0] * (target + 1)
|
||||||
|
dp_array[0] = 1
|
||||||
|
|
||||||
|
for i in range(1, target + 1):
|
||||||
|
for j in range(n):
|
||||||
|
if i - array[j] >= 0:
|
||||||
|
dp_array[i] += dp_array[i - array[j]]
|
||||||
|
|
||||||
|
return dp_array[target]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
||||||
|
n = 3
|
||||||
|
target = 5
|
||||||
|
array = [1, 2, 5]
|
||||||
|
print(combination_sum_iv(n, array, target))
|
Loading…
Reference in New Issue
Block a user