import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller min_primitive_root = 3 # I have written my code naively same as definition of primitive root # however every time I run this program, memory exceeded... # so I used 4.80 Algorithm in # Handbook of Applied Cryptography(CRC Press, ISBN : 0-8493-8523-7, October 1996) # and it seems to run nicely! def primitive_root(p_val: int) -> int: print("Generating primitive root of p") while True: g = random.randrange(3, p_val) if pow(g, 2, p_val) == 1: continue if pow(g, p_val, p_val) == 1: continue return g def generate_key(key_size: int) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("Generating prime p...") p = rabin_miller.generateLargePrime(key_size) # select large prime number. e_1 = primitive_root(p) # one primitive root on modulo p. d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety. e_2 = cryptomath.find_mod_inverse(pow(e_1, d, p), p) public_key = (key_size, e_1, e_2, p) private_key = (key_size, d) return public_key, private_key def make_key_files(name: str, keySize: int) -> None: if os.path.exists(f"{name}_pubkey.txt") or os.path.exists(f"{name}_privkey.txt"): print("\nWARNING:") print( '"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n' "Use a different name or delete these files and re-run this program." % (name, name) ) sys.exit() publicKey, privateKey = generate_key(keySize) print(f"\nWriting public key to file {name}_pubkey.txt...") with open(f"{name}_pubkey.txt", "w") as fo: fo.write( "%d,%d,%d,%d" % (publicKey[0], publicKey[1], publicKey[2], publicKey[3]) ) print(f"Writing private key to file {name}_privkey.txt...") with open(f"{name}_privkey.txt", "w") as fo: fo.write("%d,%d" % (privateKey[0], privateKey[1])) def main() -> None: print("Making key files...") make_key_files("elgamal", 2048) print("Key files generation successful") if __name__ == "__main__": main()