#!/usr/bin/env python3 """ Build a simple bare-minimum quantum circuit that starts with a single qubit (by default, in state 0) and inverts it. Run the experiment 1000 times and print the total count of the states finally observed. Qiskit Docs: https://qiskit.org/documentation/getting_started.html """ import qiskit as q def single_qubit_measure(qubits: int, classical_bits: int) -> q.result.counts.Counts: """ >>> single_qubit_measure(1, 1) {'11': 1000} """ # Use Aer's qasm_simulator simulator = q.Aer.get_backend('qasm_simulator') # Create a Quantum Circuit acting on the q register circuit = q.QuantumCircuit(qubits, classical_bits) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1]) # Execute the circuit on the qasm simulator job = q.execute(circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(circuit) if __name__ == '__main__': counts = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')