""" Perceptron w = w + N * (d(k) - y) * x(k) Using perceptron network for oil analysis, with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 p1 = -1 p2 = 1 """ import random class Perceptron: def __init__(self, sample, target, learning_rate=0.01, epoch_number=1000, bias=-1): """ Initializes a Perceptron network for oil analysis :param sample: sample dataset of 3 parameters with shape [30,3] :param target: variable for classification with two possible states -1 or 1 :param learning_rate: learning rate used in optimizing. :param epoch_number: number of epochs to train network on. :param bias: bias value for the network. """ self.sample = sample if len(self.sample) == 0: raise AttributeError("Sample data can not be empty") self.target = target if len(self.target) == 0: raise AttributeError("Target data can not be empty") if len(self.sample) != len(self.target): raise AttributeError( "Sample data and Target data do not have matching lengths" ) self.learning_rate = learning_rate self.epoch_number = epoch_number self.bias = bias self.number_sample = len(sample) self.col_sample = len(sample[0]) # number of columns in dataset self.weight = [] def training(self) -> None: """ Trains perceptron for epochs <= given number of epochs :return: None >>> data = [[2.0149, 0.6192, 10.9263]] >>> targets = [-1] >>> perceptron = Perceptron(data,targets) >>> perceptron.training() # doctest: +ELLIPSIS ('\\nEpoch:\\n', ...) ... """ for sample in self.sample: sample.insert(0, self.bias) for i in range(self.col_sample): self.weight.append(random.random()) self.weight.insert(0, self.bias) epoch_count = 0 while True: has_misclassified = False for i in range(self.number_sample): u = 0 for j in range(self.col_sample + 1): u = u + self.weight[j] * self.sample[i][j] y = self.sign(u) if y != self.target[i]: for j in range(self.col_sample + 1): self.weight[j] = ( self.weight[j] + self.learning_rate * (self.target[i] - y) * self.sample[i][j] ) has_misclassified = True # print('Epoch: \n',epoch_count) epoch_count = epoch_count + 1 # if you want controle the epoch or just by erro if not has_misclassified: print(("\nEpoch:\n", epoch_count)) print("------------------------\n") # if epoch_count > self.epoch_number or not erro: break def sort(self, sample) -> None: """ :param sample: example row to classify as P1 or P2 :return: None >>> data = [[2.0149, 0.6192, 10.9263]] >>> targets = [-1] >>> perceptron = Perceptron(data,targets) >>> perceptron.training() # doctest: +ELLIPSIS ('\\nEpoch:\\n', ...) ... >>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS ('Sample: ', ...) classification: P1 """ if len(self.sample) == 0: raise AttributeError("Sample data can not be empty") sample.insert(0, self.bias) u = 0 for i in range(self.col_sample + 1): u = u + self.weight[i] * sample[i] y = self.sign(u) if y == -1: print(("Sample: ", sample)) print("classification: P1") else: print(("Sample: ", sample)) print("classification: P2") def sign(self, u: float) -> int: """ threshold function for classification :param u: input number :return: 1 if the input is greater than 0, otherwise -1 >>> data = [[0],[-0.5],[0.5]] >>> targets = [1,-1,1] >>> perceptron = Perceptron(data,targets) >>> perceptron.sign(0) 1 >>> perceptron.sign(-0.5) -1 >>> perceptron.sign(0.5) 1 """ return 1 if u >= 0 else -1 samples = [ [-0.6508, 0.1097, 4.0009], [-1.4492, 0.8896, 4.4005], [2.0850, 0.6876, 12.0710], [0.2626, 1.1476, 7.7985], [0.6418, 1.0234, 7.0427], [0.2569, 0.6730, 8.3265], [1.1155, 0.6043, 7.4446], [0.0914, 0.3399, 7.0677], [0.0121, 0.5256, 4.6316], [-0.0429, 0.4660, 5.4323], [0.4340, 0.6870, 8.2287], [0.2735, 1.0287, 7.1934], [0.4839, 0.4851, 7.4850], [0.4089, -0.1267, 5.5019], [1.4391, 0.1614, 8.5843], [-0.9115, -0.1973, 2.1962], [0.3654, 1.0475, 7.4858], [0.2144, 0.7515, 7.1699], [0.2013, 1.0014, 6.5489], [0.6483, 0.2183, 5.8991], [-0.1147, 0.2242, 7.2435], [-0.7970, 0.8795, 3.8762], [-1.0625, 0.6366, 2.4707], [0.5307, 0.1285, 5.6883], [-1.2200, 0.7777, 1.7252], [0.3957, 0.1076, 5.6623], [-0.1013, 0.5989, 7.1812], [2.4482, 0.9455, 11.2095], [2.0149, 0.6192, 10.9263], [0.2012, 0.2611, 5.4631], ] exit = [ -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, ] if __name__ == "__main__": import doctest doctest.testmod() network = Perceptron( sample=samples, target=exit, learning_rate=0.01, epoch_number=1000, bias=-1 ) network.training() print("Finished training perceptron") print("Enter values to predict or q to exit") while True: sample = [] for i in range(len(samples[0])): observation = input("value: ").strip() if observation == "q": break observation = float(observation) sample.insert(i, observation) network.sort(sample)