TheAlgorithms-Python/data_structures/binary_tree/binary_tree_traversals.py
aryan1165 18cdbc4165
binary_search_traversals.py made memory-friendly using generators. Fixes #8725 completely. (#9237)
* Made binary tree memory-friendly using generators based travels. Fixes
#8725

* Made binary tree memory-friendly using generators based travels. Fixes
#8725

* Fixed pre-commit errors
2023-10-01 12:54:05 -04:00

206 lines
5.4 KiB
Python

from __future__ import annotations
from collections import deque
from collections.abc import Generator
from dataclasses import dataclass
# https://en.wikipedia.org/wiki/Tree_traversal
@dataclass
class Node:
data: int
left: Node | None = None
right: Node | None = None
def make_tree() -> Node | None:
r"""
The below tree
1
/ \
2 3
/ \
4 5
"""
tree = Node(1)
tree.left = Node(2)
tree.right = Node(3)
tree.left.left = Node(4)
tree.left.right = Node(5)
return tree
def preorder(root: Node | None) -> Generator[int, None, None]:
"""
Pre-order traversal visits root node, left subtree, right subtree.
>>> list(preorder(make_tree()))
[1, 2, 4, 5, 3]
"""
if not root:
return
yield root.data
yield from preorder(root.left)
yield from preorder(root.right)
def postorder(root: Node | None) -> Generator[int, None, None]:
"""
Post-order traversal visits left subtree, right subtree, root node.
>>> list(postorder(make_tree()))
[4, 5, 2, 3, 1]
"""
if not root:
return
yield from postorder(root.left)
yield from postorder(root.right)
yield root.data
def inorder(root: Node | None) -> Generator[int, None, None]:
"""
In-order traversal visits left subtree, root node, right subtree.
>>> list(inorder(make_tree()))
[4, 2, 5, 1, 3]
"""
if not root:
return
yield from inorder(root.left)
yield root.data
yield from inorder(root.right)
def reverse_inorder(root: Node | None) -> Generator[int, None, None]:
"""
Reverse in-order traversal visits right subtree, root node, left subtree.
>>> list(reverse_inorder(make_tree()))
[3, 1, 5, 2, 4]
"""
if not root:
return
yield from reverse_inorder(root.right)
yield root.data
yield from reverse_inorder(root.left)
def height(root: Node | None) -> int:
"""
Recursive function for calculating the height of the binary tree.
>>> height(None)
0
>>> height(make_tree())
3
"""
return (max(height(root.left), height(root.right)) + 1) if root else 0
def level_order(root: Node | None) -> Generator[int, None, None]:
"""
Returns a list of nodes value from a whole binary tree in Level Order Traverse.
Level Order traverse: Visit nodes of the tree level-by-level.
"""
if root is None:
return
process_queue = deque([root])
while process_queue:
node = process_queue.popleft()
yield node.data
if node.left:
process_queue.append(node.left)
if node.right:
process_queue.append(node.right)
def get_nodes_from_left_to_right(
root: Node | None, level: int
) -> Generator[int, None, None]:
"""
Returns a list of nodes value from a particular level:
Left to right direction of the binary tree.
"""
def populate_output(root: Node | None, level: int) -> Generator[int, None, None]:
if not root:
return
if level == 1:
yield root.data
elif level > 1:
yield from populate_output(root.left, level - 1)
yield from populate_output(root.right, level - 1)
yield from populate_output(root, level)
def get_nodes_from_right_to_left(
root: Node | None, level: int
) -> Generator[int, None, None]:
"""
Returns a list of nodes value from a particular level:
Right to left direction of the binary tree.
"""
def populate_output(root: Node | None, level: int) -> Generator[int, None, None]:
if root is None:
return
if level == 1:
yield root.data
elif level > 1:
yield from populate_output(root.right, level - 1)
yield from populate_output(root.left, level - 1)
yield from populate_output(root, level)
def zigzag(root: Node | None) -> Generator[int, None, None]:
"""
ZigZag traverse:
Returns a list of nodes value from left to right and right to left, alternatively.
"""
if root is None:
return
flag = 0
height_tree = height(root)
for h in range(1, height_tree + 1):
if not flag:
yield from get_nodes_from_left_to_right(root, h)
flag = 1
else:
yield from get_nodes_from_right_to_left(root, h)
flag = 0
def main() -> None: # Main function for testing.
# Create binary tree.
root = make_tree()
# All Traversals of the binary are as follows:
print(f"In-order Traversal: {list(inorder(root))}")
print(f"Reverse In-order Traversal: {list(reverse_inorder(root))}")
print(f"Pre-order Traversal: {list(preorder(root))}")
print(f"Post-order Traversal: {list(postorder(root))}", "\n")
print(f"Height of Tree: {height(root)}", "\n")
print("Complete Level Order Traversal: ")
print(f"{list(level_order(root))} \n")
print("Level-wise order Traversal: ")
for level in range(1, height(root) + 1):
print(f"Level {level}:", list(get_nodes_from_left_to_right(root, level=level)))
print("\nZigZag order Traversal: ")
print(f"{list(zigzag(root))}")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()