TheAlgorithms-Python/machine_learning/k_nearest_neighbours.py
Tianyi Zheng 76767d2f09
Consolidate the two existing kNN implementations (#8903)
* Add type hints to k_nearest_neighbours.py

* Refactor k_nearest_neighbours.py into class

* Add documentation to k_nearest_neighbours.py

* Use heap-based priority queue for k_nearest_neighbours.py

* Delete knn_sklearn.py

* updating DIRECTORY.md

* Use optional args in k_nearest_neighbours.py for demo purposes

* Fix wrong function arg in k_nearest_neighbours.py

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2023-09-27 14:01:18 +02:00

89 lines
2.9 KiB
Python

"""
k-Nearest Neighbours (kNN) is a simple non-parametric supervised learning
algorithm used for classification. Given some labelled training data, a given
point is classified using its k nearest neighbours according to some distance
metric. The most commonly occurring label among the neighbours becomes the label
of the given point. In effect, the label of the given point is decided by a
majority vote.
This implementation uses the commonly used Euclidean distance metric, but other
distance metrics can also be used.
Reference: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
"""
from collections import Counter
from heapq import nsmallest
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
class KNN:
def __init__(
self,
train_data: np.ndarray[float],
train_target: np.ndarray[int],
class_labels: list[str],
) -> None:
"""
Create a kNN classifier using the given training data and class labels
"""
self.data = zip(train_data, train_target)
self.labels = class_labels
@staticmethod
def _euclidean_distance(a: np.ndarray[float], b: np.ndarray[float]) -> float:
"""
Calculate the Euclidean distance between two points
>>> KNN._euclidean_distance(np.array([0, 0]), np.array([3, 4]))
5.0
>>> KNN._euclidean_distance(np.array([1, 2, 3]), np.array([1, 8, 11]))
10.0
"""
return np.linalg.norm(a - b)
def classify(self, pred_point: np.ndarray[float], k: int = 5) -> str:
"""
Classify a given point using the kNN algorithm
>>> train_X = np.array(
... [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]]
... )
>>> train_y = np.array([0, 0, 0, 0, 1, 1, 1])
>>> classes = ['A', 'B']
>>> knn = KNN(train_X, train_y, classes)
>>> point = np.array([1.2, 1.2])
>>> knn.classify(point)
'A'
"""
# Distances of all points from the point to be classified
distances = (
(self._euclidean_distance(data_point[0], pred_point), data_point[1])
for data_point in self.data
)
# Choosing k points with the shortest distances
votes = (i[1] for i in nsmallest(k, distances))
# Most commonly occurring class is the one into which the point is classified
result = Counter(votes).most_common(1)[0][0]
return self.labels[result]
if __name__ == "__main__":
import doctest
doctest.testmod()
iris = datasets.load_iris()
X = np.array(iris["data"])
y = np.array(iris["target"])
iris_classes = iris["target_names"]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
iris_point = np.array([4.4, 3.1, 1.3, 1.4])
classifier = KNN(X_train, y_train, iris_classes)
print(classifier.classify(iris_point, k=3))