TheAlgorithms-Python/maths/euler_modified.py
Caeden Perelli-Harris 490e645ed3
Fix minor typing errors in maths/ (#8959)
* updating DIRECTORY.md

* types(maths): Fix pylance issues in maths

* reset(vsc): Reset settings changes

* Update maths/jaccard_similarity.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* revert(erosion_operation): Revert erosion_operation

* test(jaccard_similarity): Add doctest to test alternative_union

* types(newton_raphson): Add typehints to func bodies

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2023-08-15 14:27:41 -07:00

55 lines
1.4 KiB
Python

from collections.abc import Callable
import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.
So, some changes were proposed to improve accuracy.
https://en.wikipedia.org/wiki/Euler_method
Arguments:
ode_func -- The ode as a function of x and y
y0 -- the initial value for y
x0 -- the initial value for x
stepsize -- the increment value for x
x_end -- the end value for x
>>> # the exact solution is math.exp(x)
>>> def f1(x, y):
... return -2*x*(y**2)
>>> y = euler_modified(f1, 1.0, 0.0, 0.2, 1.0)
>>> y[-1]
0.503338255442106
>>> import math
>>> def f2(x, y):
... return -2*y + (x**3)*math.exp(-2*x)
>>> y = euler_modified(f2, 1.0, 0.0, 0.1, 0.3)
>>> y[-1]
0.5525976431951775
"""
n = int(np.ceil((x_end - x0) / step_size))
y = np.zeros((n + 1,))
y[0] = y0
x = x0
for k in range(n):
y_get = y[k] + step_size * ode_func(x, y[k])
y[k + 1] = y[k] + (
(step_size / 2) * (ode_func(x, y[k]) + ode_func(x + step_size, y_get))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()