TheAlgorithms-Python/other/linear_congruential_generator.py
pre-commit-ci[bot] 895dffb412
[pre-commit.ci] pre-commit autoupdate (#9543)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.0.291 → v0.0.292](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.291...v0.0.292)
- [github.com/codespell-project/codespell: v2.2.5 → v2.2.6](https://github.com/codespell-project/codespell/compare/v2.2.5...v2.2.6)
- [github.com/tox-dev/pyproject-fmt: 1.1.0 → 1.2.0](https://github.com/tox-dev/pyproject-fmt/compare/1.1.0...1.2.0)

* updating DIRECTORY.md

* Fix typos in test_min_spanning_tree_prim.py

* Fix typos

* codespell --ignore-words-list=manuel

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2023-10-07 21:32:28 +02:00

44 lines
1.4 KiB
Python

__author__ = "Tobias Carryer"
from time import time
class LinearCongruentialGenerator:
"""
A pseudorandom number generator.
"""
# The default value for **seed** is the result of a function call, which is not
# normally recommended and causes ruff to raise a B008 error. However, in this case,
# it is acceptable because `LinearCongruentialGenerator.__init__()` will only be
# called once per instance and it ensures that each instance will generate a unique
# sequence of numbers.
def __init__(self, multiplier, increment, modulo, seed=int(time())): # noqa: B008
"""
These parameters are saved and used when nextNumber() is called.
modulo is the largest number that can be generated (exclusive). The most
efficient values are powers of 2. 2^32 is a common value.
"""
self.multiplier = multiplier
self.increment = increment
self.modulo = modulo
self.seed = seed
def next_number(self):
"""
The smallest number that can be generated is zero.
The largest number that can be generated is modulo-1. modulo is set in the
constructor.
"""
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31)
while True:
print(lcg.next_number())