TheAlgorithms-Python/project_euler/problem_018/solution.py
Christian Clauss 64543faa98
Make some ruff fixes (#8154)
* Make some ruff fixes

* Undo manual fix

* Undo manual fix

* Updates from ruff=0.0.251
2023-03-01 17:23:33 +01:00

59 lines
1.3 KiB
Python

"""
By starting at the top of the triangle below and moving to adjacent numbers on
the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""
import os
def solution():
"""
Finds the maximum total in a triangle as described by the problem statement
above.
>>> solution()
1074
"""
script_dir = os.path.dirname(os.path.realpath(__file__))
triangle = os.path.join(script_dir, "triangle.txt")
with open(triangle) as f:
triangle = f.readlines()
a = [[int(y) for y in x.rstrip("\r\n").split(" ")] for x in triangle]
for i in range(1, len(a)):
for j in range(len(a[i])):
number1 = a[i - 1][j] if j != len(a[i - 1]) else 0
number2 = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(number1, number2)
return max(a[-1])
if __name__ == "__main__":
print(solution())