TheAlgorithms-Python/project_euler/problem_174/sol1.py
fpringle b96e6c7075
Add solution for Project Euler problem 174. (#3078)
* Added solution for Project Euler problem 174. 

* Fixed import order and removed executable permission from sol1.py

* Update docstrings, doctests, and annotations. Reference: #3256

* Update docstring

* Update sol1.py

Co-authored-by: Dhruv <dhruvmanila@gmail.com>
2020-10-16 15:14:09 +05:30

53 lines
1.5 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Project Euler Problem 174: https://projecteuler.net/problem=174
We shall define a square lamina to be a square outline with a square "hole" so that
the shape possesses vertical and horizontal symmetry.
Given eight tiles it is possible to form a lamina in only one way: 3x3 square with a
1x1 hole in the middle. However, using thirty-two tiles it is possible to form two
distinct laminae.
If t represents the number of tiles used, we shall say that t = 8 is type L(1) and
t = 32 is type L(2).
Let N(n) be the number of t ≤ 1000000 such that t is type L(n); for example,
N(15) = 832.
What is ∑N(n) for 1 ≤ n ≤ 10?
"""
from collections import defaultdict
from math import ceil, sqrt
def solution(t_limit: int = 1000000, n_limit: int = 10) -> int:
"""
Return the sum of N(n) for 1 <= n <= n_limit.
>>> solution(1000,5)
249
>>> solution(10000,10)
2383
"""
count: defaultdict = defaultdict(int)
for outer_width in range(3, (t_limit // 4) + 2):
if outer_width * outer_width > t_limit:
hole_width_lower_bound = max(
ceil(sqrt(outer_width * outer_width - t_limit)), 1
)
else:
hole_width_lower_bound = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(hole_width_lower_bound, outer_width - 1, 2):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10)
if __name__ == "__main__":
print(f"{solution() = }")