TheAlgorithms-Python/project_euler/problem_018/solution.py
Christian Clauss 9b95e4f662
Pyupgrade to python3.8 (#3616)
* Upgrade to Python 3.8 syntax

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2020-10-21 12:46:14 +02:00

65 lines
1.4 KiB
Python

"""
By starting at the top of the triangle below and moving to adjacent numbers on
the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""
import os
def solution():
"""
Finds the maximum total in a triangle as described by the problem statement
above.
>>> solution()
1074
"""
script_dir = os.path.dirname(os.path.realpath(__file__))
triangle = os.path.join(script_dir, "triangle.txt")
with open(triangle) as f:
triangle = f.readlines()
a = [[int(y) for y in x.rstrip("\r\n").split(" ")] for x in triangle]
for i in range(1, len(a)):
for j in range(len(a[i])):
if j != len(a[i - 1]):
number1 = a[i - 1][j]
else:
number1 = 0
if j > 0:
number2 = a[i - 1][j - 1]
else:
number2 = 0
a[i][j] += max(number1, number2)
return max(a[-1])
if __name__ == "__main__":
print(solution())