TheAlgorithms-Python/blockchain/diophantine_equation.py
John Law 06dad4f9d8
Fix mypy in #3149 (#3988)
* Fix mypy in #3149 
* Fix pre-commit
2020-11-29 23:16:26 +05:30

132 lines
3.1 KiB
Python

from typing import Tuple
def diophantine(a: int, b: int, c: int) -> Tuple[float, float]:
"""
Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
diophantine equation a*x + b*y = c has a solution (where x and y are integers)
iff gcd(a,b) divides c.
GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
>>> diophantine(10,6,14)
(-7.0, 14.0)
>>> diophantine(391,299,-69)
(9.0, -12.0)
But above equation has one more solution i.e., x = -4, y = 5.
That's why we need diophantine all solution function.
"""
assert (
c % greatest_common_divisor(a, b) == 0
) # greatest_common_divisor(a,b) function implemented below
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
r = c / d
return (r * x, r * y)
def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None:
"""
Lemma : if n|ab and gcd(a,n) = 1, then n|b.
Finding All solutions of Diophantine Equations:
Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of
Diophantine Equation a*x + b*y = c. a*x0 + b*y0 = c, then all the
solutions have the form a(x0 + t*q) + b(y0 - t*p) = c,
where t is an arbitrary integer.
n is the number of solution you want, n = 2 by default
>>> diophantine_all_soln(10, 6, 14)
-7.0 14.0
-4.0 9.0
>>> diophantine_all_soln(10, 6, 14, 4)
-7.0 14.0
-4.0 9.0
-1.0 4.0
2.0 -1.0
>>> diophantine_all_soln(391, 299, -69, n = 4)
9.0 -12.0
22.0 -29.0
35.0 -46.0
48.0 -63.0
"""
(x0, y0) = diophantine(a, b, c) # Initial value
d = greatest_common_divisor(a, b)
p = a // d
q = b // d
for i in range(n):
x = x0 + i * q
y = y0 - i * p
print(x, y)
def greatest_common_divisor(a: int, b: int) -> int:
"""
Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
Euclid's Algorithm
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime,
mutually prime, or co-prime if the only positive integer (factor) that
divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
"""
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers
x and y, then d = gcd(a,b)
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
"""
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y)
if __name__ == "__main__":
from doctest import testmod
testmod(name="diophantine", verbose=True)
testmod(name="diophantine_all_soln", verbose=True)
testmod(name="extended_gcd", verbose=True)
testmod(name="greatest_common_divisor", verbose=True)